
Suggesting Public Transit Networks Given Points of Interest

IB Mathematics HL Internal Assessment

Contents

1 Introduction 1

2 Data Preparation 1
2.1 Weighting the POIs . 1

3 POI Clustering 1
3.1 The DBSCAN Algorithm . 4
3.2 Choosing " and mp . 4
3.3 Cluster Centroid Calculation . 5
3.4 Cluster Weight Calculation . 5

3.4.1 The Haversine Formula . 6
3.5 Map of Cluster Centroids . 6

4 Identifying Potential Lines 6
4.1 Using Gaussian Mixture Models . 6

4.1.1 Covariance Matrices . 7
4.2 Identifying Potential Transit Lines . 8

4.2.1 Eigenvectors and Eigenvalues . 8
4.2.2 Identifying Potential Termini . 8

5 Linking Stations in a Line 10
5.1 Preparing the Cost Matrix . 10

5.1.1 Designing the Cost Function . 11
5.2 Connecting the Dots with Prim’s Algorithm . 11

5.2.1 Filtering Irrelevant Stations . 12

6 Conclusions 12
6.1 Suggestions for Improvement & Further Work . 12

References 14

A Montreal’s Existing Metro System 15

B Program Code 16

1 Introduction

As a child, I was obsessed with Thomas the Tank
Engine. When I was six, my dad took me on an
outing into town on the commuter train because
he knew I would be so excited to go on a real life
train! What started out as a passion for loco-
motives gradually evolved into an interest in the
design and implementation of public transit net-
works. What factors are considered when plan-
ning metro lines? How can transfer times be-
tween di↵erent modes of transport be minimized?

In this Mathematics IA, I develop a methodology
for optimizing the placement of transit stations
given the points of interest (POIs) in a given re-
gion. Specifically, I seek to propose a layout for
a brand new metro system in the city of Mon-
treal, Canada. Montreal already has a 68-station
metro system. However, I chose to suggest a new
system for the city because I am familiar with
its neighbourhoods and could use my knowledge
of the region to validate my results. In theory,
this same methodology could be used in a city
that does not have an existing transit system, or
even to plan a network for autonomous vehicles,
drones, etc. While my methodology is far from
perfect, it does o↵er interesting results and could
be used as a springboard in the process of urban
planning.

Due to the numerous, complex calculations re-
quired to achieve this, a program I wrote in R,
a language in which I have a lot of experience,
was used to process the dataset. This program is
based on several publicly licensed, open-source R
packages that are identified throughout this IA
where relevant. The source code for my program
is available in Appendix B.

2 Data Preparation

My methodology aims to ease congestion in
dense urban areas by o↵ering public transit al-
ternatives. These dense areas can be identified
by looking at where all the POIs in the city are

located. This being said, a dataset containing
the name, latitude, longitude, and type of every
POI in Greater Montreal was obtained using the
Google Places API (“Places API Web Service”,
2018). A POI could be a business, a park, a
restaurant, a library, a fire station, a school, etc.

Figure 1 contains a map of every POI in the city.

As can be clearly seen in Figure 1, there are sig-
nificantly more POIs in the downtown core of the
city and along major thoroughfares than in the
rural areas o↵ the island.

2.1 Weighting the POIs

Once all the POIs are collected, we will heuris-
tically assign each one a relative weighting w
depending on what type of POI it is (as given
by the Google Places API): POIs are weighted
more heavily depending on how important it is
for them to be in proximity to a transit station.
The domain of the weights used is w 2 [0, 1],
with a POI of 0 having no impact on the output
of the algorithm, and a weighting of 1 having a
strong impact on the output of the algorithm.
For example, universities and hospitals received
a heavy weighting of 1, small businesses such as
post o�ces and real estate agencies received a
light weighting of 0.05, and POIs such as fire sta-
tions, gas stations, and existing transit stations
(which I did not want to influence the suggested
configuration) received a weighting of 0.

Table 1 summarizes the weights assigned to each
POI type for this paper.

3 POI Clustering

Because this methodology aims to alleviate con-
gestion in dense urban cores, an e�cient sug-
gested transit system will seek to maximize the
number of weighted POIs that can be made ac-
cessible to passengers. As such, the collection of
POIs needs to be searched for dense pockets that
would be ideal candidates for station locations.

1

F
ig
u
re

1:
A
ll
th
e
P
O
Is

in
th
e
G
re
at
er

M
on

tr
ea
l
re
gi
on

,
w
it
h
ea
ch

b
la
ck

p
oi
nt

re
p
re
se
nt
in
g
on

e
P
O
I.

T
o
em

p
h
as
iz
e
d
en

si
ty
,
al
l
p
oi
nt
s

h
av
e
an

op
ac
it
y
of

0.
1
re
ga

rd
le
ss

of
th
e
w
ei
gh

t
of

th
e
P
O
I
it
re
p
re
se
nt
s.

G
en

er
at
ed

u
si
n
g
th
e
p
l
o
t
R

fu
n
ct
io
n
.

2

Table 1: Weights of Google Places POI Types

POI Type Weight POI Type Weight POI Type Weight

accounting 0 establishment 0 parking 0.4
airport 1 fire station 0 pet store 0.2
amusement park 0.8 florist 0.2 pharmacy 0.2
aquarium 0.8 funeral home 0.1 physiotherapist 0.4
art gallery 0.4 furniture store 0.1 plumber 0
atm 0.4 gas station 0 point of interest 0
bakery 0.25 gym 0.6 police 0
bank 0.2 hair care 0.4 political 0
bar 0.6 hardware store 0.2 post o�ce 0.05
beauty salon 0.25 hindu temple 0.1 real estate agency 0.05
bicycle store 0.6 home goods store 0.25 restaurant 0.4
book store 0.6 hospital 1 roofing contractor 0
bowling alley 0.4 insurance agency 0.1 route 0
bus station 0 intersection 0 rv park 0
cafe 0.4 jewelry store 0.2 school 0.6
campground 0.2 laundry 0 shoe store 0.2
car dealer 0.1 lawyer 0.25 shopping mall 0.6
car rental 0.2 library 0.6 spa 0.2
car repair 0.4 liquor store 0.2 stadium 0.8
car wash 0 local government o�ce 0.4 storage 0.15
casino 0.8 locality 0 store 0.25
cemetery 0.1 locksmith 0 street address 0
church 0.1 lodging 0.6 street number 0
city hall 0.4 meal delivery 0 subway station 0
clothing store 0.6 meal takeaway 0.1 synagogue 0.1
convenience store 0.1 mosque 0.1 taxi stand 0.4
courthouse 0.2 movie rental 0.1 train station 0
dentist 0.1 movie theater 0.4 transit station 0
department store 0.6 moving company 0 travel agency 0.15
doctor 0.6 museum 0.8 university 1
electrician 0.1 night club 0.8 veterinary care 0.25
electronics store 0.2 painter 0.05 zoo 0.4
embassy 0.6 park 0.6

This table contains all of the possible POI types provided by the Google Places API. I heuristically
assigned a weight to each type depending on how important I felt it was to have each type of POI
connected to public transit. It goes without saying that these weightings are subjective and could
be modified on a case-by case-basis.

3

This can be accomplished using a clustering al-
gorithm. In graphical data analysis, clustering
algorithms are used to identify data points whose
given properties are similar and group them into
clusters. Because we will be grouping POIs that
are geographically close to each other, the prop-
erties in which we will look for similarity are
latitude and longitude. Therefore, the type of
clustering algorithm we need to use is a density-
based one. A popular density-based clustering
algorithm that we will use is DBSCAN (Density-
Based Spatial Clustering of Applications with
Noise), developed by Ester, Kriegel, Sander, and
Xu (1996). This algorithm requires the user to
specify two parameters: a maximum radius " in
which to search for neighbouring points, and a
threshold mp that is the minimum number of
points required to form a cluster.

3.1 The DBSCAN Algorithm

The DBSCAN algorithm works as follows (Ester
et al., 1996):

• Let S"(p) be the neighbouring set of points
from the set of all points D whose distance
from p is less than or equal to ".

S"(p) = {q 2 D | dist(p,q) "}

• Label point p as directly density-reachable
from a point q if p is a neighbouring point
of q and there are at least mp points in the
neighbouring set of q.

p 2 S"(q) and |S"(q) | � mp

• Label point p as density-reachable from a
point q if there is a chain of points p1, p2,
. . . , pn given p1 = q and pn = p such that
pi+1 is directly density-reachable from pi.

• Label point p as density connected to a
point q if there is a point o such that p
and q are both density-reachable from o.

• A cluster C is a non-empty subset of D such
that, 8p,q, if p 2 C and q is density-

Figure 2: A DBSCAN cluster given mp = 4. The
red points are all density-reachable from each
other, and are directly density-reachable from
each other if their centres lie within the radius "
from the core of another red point. Points A and
B are density-connected to each other. Point N
is noise. Taken fromWikipedia user Chire (2011;
CC BY-SA 3.0).

reachable from p, then q 2 C, and that
8p,q 2 C, p is directly-connected to q.

• Label any point z not in a cluster C as noise.

Figure 2 illustrates how the DBSCAN algorithm
works.

3.2 Choosing " and mp

The values for " and mp have a significant influ-
ence on the suggested transit network. By vary-
ing these parameters, di↵erent types of transit
systems can be suggested with di↵erent distances
between the stations: larger values for the pa-
rameters could be selected for determining ideal
locations for intercity rail stations over large ge-
ographical regions, smaller values for commuter
rail stations into a city core, smaller values still
for an underground metro system, and even
smaller values for tram lines or bus routes.

Ultimately, we will set the values for " and mp

heuristically:

" = 0.0003, mp = 65

Note that the value for " is set in degrees of lati-
tude/longitude. As we will soon see, these values
yield a system with distances between stations

4

akin to a metro system.

Given these parameters, 165 high-density clus-
ters are identified in the Greater Montreal re-
gion.

3.3 Cluster Centroid Calculation

The DBSCAN algorithm will simply assign a
point p to a cluster C. It is up to us, however,
to do something with these assignments. We will
use these assignments to calculate the centroid of
the cluster using a weighted average of the POIs
in the cluster. If the POI pi is an ordered pair
of latitude 'i and longitude �i (pi = ('i,�i)), �i
is the weight of POI pi, and there are Np POIs
in the cluster, then the centroid C of cluster C
is given by

C =

PNp

i=1 �ipiPNi
i=1 �i

3.4 Cluster Weight Calculation

Next, each cluster needs to be assigned a weight.
Despite all being clusters with high densities of
POIs, some clusters would benefit more from be-
coming a station than others. For example, a
cluster dense with POIs such as laundromats,
convenience stores, real estate agencies, and hair-
dressers will almost certainly see less passenger
tra�c than a cluster containing a movie theatre,
a university, a library, and a shopping centre.

This being said, public transit users are not nec-
essarily homogeneous; they can be hard to pre-
dict. While the rule of thumb used in the ur-
ban planning industry is that passengers are will-
ing to walk 400m to bus stops, and 800m to
railway stations (El-Geneidy, Grimsrud, Wasfi,
Tétreault, & Surprenant-Legault, 2013, p. 2),
some passengers may be more likely to walk a
certain distance after exiting a station than oth-
ers.

As such, I do not think the weight of a clus-
ter would simply be the sum of all the POIs

in that cluster. Instead, the weight of a clus-
ter needs to also take into account the distance
of the POI from center of the cluster (where the
station would hypothetically be) and the likeli-
hood that a passenger would walk that distance
in order to get to that POI from the station, as-
suming they do not transfer to another mode of
transit such as a bus or a bicycle.

El-Geneidy et al. studied the walking habits of
public transit users in Montreal. They found
that, as suggested by the rule of thumb, pas-
sengers are generally willing to walk further to
reach faster modes of transit like trains and met-
ros than they are to reach bus stations. While
the number of passengers willing to walk a given
distance to most bus stations o↵ered by the re-
gional providers saw an approximately exponen-
tial decline as the distance increased, the trend
for train and metro passengers resembled a Gaus-
sian distribution.

Gaussian distributions are often used in the
social sciences to model human behaviour
(Simonton, 2008). Also known as the normal dis-
tribution, Gaussian distributions have the form

N (x | µ,�2) =
1

�
p
2⇡

e�
(x�µ)2

2�2 , µ 2 R, �2 > 0

where µ is the mean of the dataset and � is the
standard deviation of the dataset. El-Geneidy
et al. suggested that the standard deviation of
the dataset for metro users in Montreal was
297.37m, and so � was hence defined. The mean
µ was set to 0m so that POIs that required little
walking were weighted heavily, whereas POIs far
from the cluster’s centroid were penalized.

Finally, the weight �C of cluster C could be cal-
culated:

�C =

NpX

i=1

�iN (dist(pi,C) | µ,�2)

where Np is the number of POIs in the cluster,
�i is the weight of POI pi in the cluster, C

is the centroid of cluster C, dist(pi,C) is the
distance between pi and C , and µ and � are as
previously defined.

5

By multiplying the weight of each POI in a clus-
ter by the normal distribution suggested by El-
Geneidy et al., the weight of each POI would be
considered relative to how much tra�c it would
actually attract from the station given the dis-
tance passengers would have to walk to get there.
This being said, it is crucial to represent this dis-
tance in metres, as the standard deviation sug-
gested by El-Geneidy et al. is in metres. How-
ever, our coordinate system is in degrees of lati-
tude and longitude, and not in metres. As such,
we need to use the haversine formula to approx-
imate distances in metres between our POIs.

3.4.1 The Haversine Formula

The haversine formula is used for determining
the great-circle distance between two points on
a sphere. Because Earth is practically spherical,
the haversine formula can be used to approxi-
mate distances between coordinate pairs on the
Earth’s surface. The haversine function hav (✓)
is defined as follows (Chopde & Nichat, 2013):

hav (✓) = sin2
✓
✓

2

◆

The haversine formula relates the distance d be-
tween two points on the sphere, the radius R
of the sphere in question, the latitudes of the
two points '1,'2, and the longitudes of the two
points �1,�2 following the equation (Chopde &
Nichat, 2013)

hav

✓
d

R

◆
= hav('2 � '1)+

+ cos('1) cos('2)hav(�2 � �1)

which can be rearranged such that d is isolated:

d = 2R asin

 s
hav('2 � '1)+

+ cos('1) cos('2)hav(�2 � �1)

!

= dist (('1,�1) , ('2,�2))

3.5 Map of Cluster Centroids

Figure 3 displays the centroids of the 165
identified clusters, coloured by their respective

weights. Each point represents a potential sta-
tion placement in our network.

4 Identifying Potential Lines

Next, we need to identify where placing a line
would make sense. Logically, a transit line
should follow a thoroughfare where there are
many POIs as opposed to, say, zigzag nonsen-
sically across the city. This also makes it easier
to plan the routes that make up the network.

4.1 Using Gaussian Mixture Models

To achieve this, we can perform another clus-
tering of the high-density clusters we already
found. Doing so will allow us to identify pockets
of cluster centroids in the region. This will be
done using Gaussian mixture models (GMMs)
as laid out by Sanderson and Curtin (2017).
In a nutshell, GMMs iteratively adapt NG D-
dimensional Gaussian distributions to the D-
dimensional dataset in order to determine prob-
abilistically which cluster a point most likely be-
longs to. This means that a point technically
could belong to allNG Gaussians simultaneously,
but there is one Gaussian it most probably be-
longs to (and usually by far). The probability
that a point x (represented as a D-dimensional
vector) is in GMM cluster1 G is given by

P (x |⇥) =
NGX

G=1

⇢GN (x | µG,⌃G)

where ⇥ = {⇢G,µG,⌃G}NG
G=1 with the con-

straints
PNG

G=1 ⇢G = 1, ⇢G � 0, where ⇢G is the
weight of cluster G (not to be confused with �C ,
representing the weight of DBSCAN cluster C).
The Gaussian distribution N (x | µG,⌃G) in D-
dimensions given the mean µ (a D-dimensional
vector) and the covariance matrix ⌃ (a D ⇥

1To avoid confusion between high-density clusters
identified by the DBSCAN algorithm and the clusters of
those clusters found by the GMM algorithm, the latter
will henceforth be identified as GMM clusters.

6

Figure 3: The centroids of the clusters found by the DBSCAN algorithm. The shade of blue of each
point represents the weight of each cluster. Note that clusters with heavier weights are focused
around the downtown core. Generated using the ggplot2 R package.

D matrix whose particular nature is explained
in detail in the next section) is (Sanderson &
Curtin, 2017)

N (x | µ,⌃) =
e
�1

2
(x� µ)>⌃�1(x� µ)

(2⇡)
D
2 |⌃|

1
2

In order to best fit NG Gaussian distributions to
a dataset, ⇥ needs to be initialized and then it-
eratively adapted, achieving a better and better
fit with each iteration. The mclust R package
(Scrucca, Fop, Murphy, & Raftery, 2016) han-
dles this in a similar way to that outlined by
Sanderson and Curtin. Ultimately, the math be-
hind this process, while interesting, is fairly in-
significant in the planning of transit networks.
In short, we substitute the two-dimensional po-
sition vector for x in the preceding equations
so that we can cluster our centroids. Essentially,
once we identify clusters of centroids, we can look
at the shape of that cluster to identify where it
makes sense to run a line.

4.1.1 Covariance Matrices

A covariance matrix is essentially a matrix repre-
senting the variance of the distribution of points
in a given dataset in multiple dimensions. In
one-dimensional data, variance, represented by
the symbol �2, is often simply defined as the
average squared distance from the mean µ of a
dataset X = {x1, x2, . . . , xn}:

�2 =
1

n

nX

i=1

(xi � µ)2

For multidimensional data, the element cov(j, k)
of the covariance matrix ⌃ represents the vari-
ability of a dataset between the jth and kth di-
mensions, and the element �2

j represents the vari-

ance of the dataset in the jth dimension. Note
that cov(j, k) = cov(k, j). For example, for a
four-dimensional dataset of dimensions w, x, y,
and z, the covariance matrix ⌃ would be

⌃ =

2

666666664

�2
w cov(w, x) cov(w, y) cov(w, z)

cov(x,w) �2
x cov(x, y) cov(x, z)

cov(y, w) cov(y, x) �2
y cov(y, z)

cov(z, w) cov(z, x) cov(z, y) �2
z

3

777777775

7

In our case, using GMM clusters, we only have
two dimensions to consider: the latitude and lon-
gitude of the centroid of the high-density cluster
found by the DBSCAN algorithm, centred at .
The similarity �(,i) of a point to be clus-
tered to a point i already in a GMM cluster
centred at � can be found by squaring the scalar
product of and i relative to � (Rojas, 2009):

�(,i) =
⇣
(� �)>(i � �)

⌘2

By repeating this computation for each POI i

in the GMM cluster in question (i = 1, . . . , Ni)
and averaging the results, we can understand
where ⌃ comes from:

�(,�) =
1

Ni

NiX

i=1

⇣
(� �)>(i � �)

⌘2

=
1

Ni

NiX

i=1

(� �)>(i � �)(i � �)>(� �)

= (� �)>

1

Ni

NiX

i=1

(i � �)(i � �)>
!
(� �)

= (� �)>⌃(� �)

Therefore, ⌃ = 1
Ni

PNi
i=1(i � �)(i � �)>.

4.2 Identifying Potential Transit

Lines

Finally, the Gaussian distributions have been de-
termined. Typically, the results of GMM cluster-
ing are illustrated using variance ellipses. A vari-
ance ellipse is essentially a visual representation
of a covariance matrix.

4.2.1 Eigenvectors and Eigenvalues

In order to understand variance ellipses, one first
must understand eigenvalues and eigenvectors.
Essentially, if there exists some square matrix
A, some scalar t, and some non-zero vector v,
then t is deemed an eigenvalue and v is deemed
an eigenvector if the equation

Av = tv

is satisfied (Weisstein, 2018). This equation can
be rewritten as

(A� tI)v = 0

where I is the identity matrix. This will only
have a solution if

|A� tI| = 0

Note that the eigenvectors of a matrix are lin-
early independent and are often normalized.

Expanding the matrix multiplication embedded
in ⌃ reveals that

⌃ =
1

Ni

NiX

i=1

('i � �')2 ('i � �')(�i � ��)

('i � �')(�i � ��) (�i � ��)2

�

Note that the elements in the main diagonal of ⌃
are equal to the latitude and longitude variances
�2
' and �2

�, respectively. The o↵-diagonal gives
the covariance between the latitude and longi-
tude (' and �). Also note that the two elements
in the o↵-diagonal are identical.

Finally, to solve for the eigenvectors v and eigen-
vales t of ⌃, we need to solve the equation

⌃v = tv

where t is as defined in the preceding equation.
D-dimensional covariance matrices yield D lin-
early independent eigenvectors and their respec-
tive eigenvalues. The eigen() R function is
able to quickly solve for them for us. Know-
ing these, the variance ellipses can be plotted for
each GMM cluster, as shown in Figure 4.

4.2.2 Identifying Potential Termini

Note that, in Figure 4, the longest of the scaled
eigenvectors in the variance ellipse is aligned
with the main axis of the distribution of the
points in the cluster its ellipse represents. We
will use this property to identify the termini
of the lines: the termini will be the two clos-
est points in each GMM cluster to the points
of intersection between the line representing the
longest of the eigenvectors in the variance ellipse

8

F
ig
u
re

4:
T
h
e
5
va
ri
an

ce
el
li
p
se
s
re
su
lt
in
g
fr
om

th
e
G
M
M

cl
u
st
er
in
g.

E
ac
h
el
li
p
se

il
lu
st
ra
te
s
a
G
M
M

cl
u
st
er
.
T
h
e
sm

al
le
r
th
e
el
li
p
se
,

th
e
d
en

se
r
th
e
cl
u
st
er
.
T
h
e
d
as
h
ed

li
n
es

il
lu
st
ra
te

th
e
tw

o
sc
al
ed

ei
ge
nv

ec
to
rs

th
at

d
efi

n
e
ea
ch

el
li
p
se
.
G
en

er
at
ed

u
si
n
g
th
e
m
c
l
u
s
t
R

p
ac
ka
ge
.

9

and the geographical region being analyzed (in
this case, Greater Montreal).

The eigenvectors provided by eigen() R func-
tion are normalized, so we need to rescale them
for our purposes. Let vG1 and vG2 be the scaled
eigenvectors of the GMM cluster G (Wold, Es-
bensen, & Geladi, 1987):

vG1 = v̂G1

p
tG1 , vG2 = v̂G2

p
tG2

where v̂G1 and v̂G2 are the normalized eigenvec-
tors of the covariance matrix and tG1 and tG2 are
the respective eigenvalues. Now that the eigen-
vectors are rescaled, we can determine the slope
a of the line representing the main axis along
which points are found in the GMM cluster:

B = argmax
k=1,2

||vGk ||, a =
vGB'

vGB�

Note that the operator argmax
x

f(x) represents

the value of x for which f(x) is maximum.

Given that the point slope form of a line is
y � y1 = a(x� x1), the two points in the GMM
cluster G closest to those where the line of slope
a leaves the region being examined would be the
termini of the line because they are at oppo-
site ends of the cluster. If the northwest corner
of the region in question is given by the vector
(�N,⇤W) and the southeast corner is given by
the vector (�S,⇤E), the latitude 'e represents
the latitude of the endpoint where the line of
slope a leaves the region being examined:

'eN = a(⇤W � ��) + �'

'eS = a(⇤E � ��) + �'

where � is the centroid of the GMM cluster being
analyzed.

The indices of the two termini ⌧NW and ⌧SE are
therefore given by

⌧NW = argmin
i=1,...,Ni

dist (('eN ,⇤W),i)

⌧SE = argmin
i=1,...,Ni

dist (('eS ,⇤E),i)

Note that the operator argmin
x

f(x) represents

the value of x for which f(x) is minimum.

Figure 5: The minimum spanning stree of an
example network of nodes and weighted edges.
Taken fromWikipedia user Dcoetzee (2005; pub-
lic domain).

5 Linking Stations in a Line

Next, points in each GMM cluster can be linked
to form the most e�cient route. Note that not all
points in the cluster will become part of the line.
To do this, we will turn to graphs. A graph is a
network composed of nodes connected by edges.
These edges may be weighted, as is the case with
our lines: the weight of each edge is a function of
the sum of the weights of the clusters (the nodes)
that edge connects. To begin, each cluster is
connected to all the other clusters in the network
this way. However, we want to find the most
e�cient layout for our transit system. So, we
will use minimum spanning trees that seek to
connect all the nodes in a set to each other such
that the sum of the cost of the edges connected
is minimized.

5.1 Preparing the Cost Matrix

The igraph R package has a built in function
that finds the minimum spanning tree. The func-
tion requires a square cost matrix ⌦ as a param-

10

eter of the form

⌦ =

2

6664

0 !12 · · · !1i

!21 0 · · · !2i
...

...
. . .

...
!i1 !i2 · · · 0

3

7775

where !jk is the cost of the edge connecting
nodes j and k. Note that elements along the
main diagonal of the cost matrix are 0 as there
is no cost to connecting a station to itself.

5.1.1 Designing the Cost Function

The nature of the function !(j ,k) is signifi-
cant in the output of the program. Our design
will severely penalize the connection of points
that are significantly closer than one and a half
times farther apart the standard deviation � of
the distance passengers were willing to walk after
exiting the station, while only gradually penaliz-
ing stations as they grow farther apart from one
and a half times �. Multiplying � by 3

2 is neces-
sary because a passenger might walk a distance
about � metres from the station, so to avoid over-
lapping walkability-radii, the stations needed to
be separated a bit more. My cost function is:

!(j ,k) =
1

100

✓
d� 3

2
�

◆2

+
1 +

1

ed�
3
2�

10
10

⇣
�Cj

+�Ck

⌘ ,

d = dist(j ,k)

The quadratic term of !(j ,k) serves to grad-
ually penalize the connecting of stations that are
progressively further apart than 3�

2 . The expo-
nential term serves to severely penalize the con-
nection of stations that are closer together than
3�
2 . The sum �Cj + �Ck in the coe�cient of the
exponential term serves to fine tune where the
exponential penalization begins. This is because
it might be worth connecting two potential sta-
tions with very high densities even if they are
slightly closer together than 3�

2 so as to not leave
one station bear the brunt of high passenger traf-
fic.

Figure 6: Plot of the cost function !(j ,k)
given � = 297.37 and �Cj + �Ck = 5,

akin to the combined weights of two relatively
dense neighbouring clusters.

0 200 400 600 800 1,000

0

200

400

Walking Distance (m)

C
o
st

(!
)

Two plots of !(j ,k) with two di↵erent values
for �Cj + �Ck are available in Figures 6 and 7,
respectively, to illustrate the e↵ect of the �Cj +
�Ck parameter.

5.2 Connecting the Dots with Prim’s

Algorithm

Finally, we are ready to connect the dots, so to
speak—to form metro lines and suggest a public
transit network given only the POIs in a region.

The igraph R package uses Prim’s algorithm
(Prim, 1957) to find the minimum spanning tree
e�ciently. The algorithm is simple: an arbitrary
node seeds the tree, and the algorithm searches
for the edge connected to the node with the low-
est cost. The node at the other end of that edge
is also added to the tree. Then, the process is re-
peated for the node at the other end of the edge,
connecting it to a node not yet part of the tree.
The process is repeated until all the nodes are
part of the tree. No node may be connected to
more than two other nodes. See Figure 8 for an
example of Prim’s algorithm connecting a set of
nodes.

Once the minimum spanning tree is determined,
the transit line follows the least costly path

11

Figure 7: Plot of the cost function !(j ,k)
given � = 297.37 and �Cj + �Ck = 1,

akin to the combined weights of two relatively
sparse neighbouring clusters.

0 200 400 600 800 1,000

0

200

400

Walking Distance (m)

C
o
st

(!
)

within the minimum spanning tree that connects
the two termini we identified in Section 4.2.2.

5.2.1 Filtering Irrelevant Stations

There are only a few loose ends to tie up. First
of all, a verification is added to the program to
ensure that each line has a minimum of ms sta-
tions. This filters out the odd GMM cluster of
a few insignificant stations that would never jus-
tify having their own line in the real world, often
far away from the rest of the network.

Furthermore, another verification is added that
filters out lines formed from extremely large
GMM clusters, such as the blue cluster in Fig-
ure 4. This is done by comparing the variance
of the magnitude of the scaled eigenvector of
that GMM cluster with the mean magnitude for
all clusters. If the variance surpasses a certain
threshold �2

max, the line is ignored. In other ap-
plications, this filtering process could be used to
distinguish between lines for di↵erent modes of
transit. For example, while I am trying to iden-
tify lines for a metro system, lines filtered out for
being too spread out could make for good com-
muter rail lines which cover more distance, with
more separation between stations.

6 Conclusions

Ultimately, the program as described suggests
the network depicted in Figure 9. The network
actually resembles that of the core of Montreal’s
existing metro system, which is overlaid in Fig-
ure 9 and also included separately in Figure 10
of Appendix A.

6.1 Suggestions for Improvement &

Further Work

It goes without saying the output of the program
can still be significantly improved upon. First of
all, using the haversine as the distance function
to determine the walkability-radii assumes that
pedestrians are not, in fact, limited to walking
on sidewalks but are able to walk through build-
ings. This is certainly not the case, and using
a Manhattan distance function given the road
network of the city could o↵er a more accurate
alternative. Furthermore, many of the stations
in the network are still very close together de-
spite the high cost penalty for this being the
case. This suggests that there might be a more
e↵ective way to incorporate the suggested walka-
bility radius of 300m from El-Geneidy et al. into
the program than how it is being done currently.
Similarly, in some cases, the minimum spanning
tree would cross over itself in order to avoid high
penalties for linking stations that are too close
together. It would not make sense in the real
world for a metro line to do that. Also, a sug-
gestion for where to link two separate metro lines
in the proposed system is not currently o↵ered.

The most significant flaw in this methodol-
ogy, however, is that it does not consider the
fact that public transit users need to somehow
reach the network from their homes. The sug-
gested network in the output of the program
solely runs through dense commercial neighbour-
hoods; branches of lines extending into residen-
tial neighbourhoods as with the Green and Or-
ange lines in Montreal’s existing metro system
are notably missing from the output of the pro-
gram.

12

(a) After 1 iteration (b) After 2 iterations (c) After 3 iterations (d) After 29 iterations

Figure 8: Prim’s algorithm connecting a sample of nodes. The cost of each connection is the
Euclidean distance between nodes. Taken from Wikipedia user Shiyu Ji (2016; CC BY-SA 4.0).

Figure 9: The final output of the program containing the suggested layout for the metro network
given the input parameters. The black triangles indicate the locations of existing metro stations in
Montreal, for comparison. Generated using the ggmap R package.

13

References

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). Optics: Ordering points to identify
the clustering structure. Oettingenstr. 67, D-80538 München, Germany: Institute for Computer
Science, University of Munich.

Chopde, N. R., & Nichat, M. K. (2013, April). Landmark based shortest path detection by
using a* and haversine formula. International Journal of Innovative Research in Computer and
Communication Engineering , 1 (2), 298-302.

Csárdi, G., & Nepusz, T. (2017, July). Package ‘igraph’ (1.1.2 ed.) [Computer software manual].

El-Geneidy, A., Grimsrud, M., Wasfi, R., Tétreault, P., & Surprenant-Legault, J. (2013, Octo-
ber). New evidence on walking distances to transit stops: Identifying redundancies and gaps using
variable service areas. Transportation, 41 (1), 193-210.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discover-
ing clusters in large spatial databases with noise. Oettingenstr. 67, D-80538 München, Germany:
Institute for Computer Science, University of Munich.

Goldthwaite, W. M. (1892). Goldthwaite’s geographical magazine (Vol. 3-4). New York City.

Lilly, J. (2016). The variance ellipse.

Places api web service [Computer software manual]. (2018, January).

Prim, R. C. (1957, November). Shortest connection networks and some generalizations. Bell System
Technical Journal , 36 (6), 1389-1401.

Rojas, R. (2009, January). The secret life of the covariance matrix.

Sanderson, C., & Curtin, R. (2017). An open source c++ implementation of multi-threaded gaus-
sian mixture models, k-means and expectation maximisation. In The 11th international conference
on signal processing and communication systems (icspcs 2017).

Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016, August). mclust 5: Clustering, classi-
fication and density estimation using gaussian finite mixture models [Computer software manual].

Simonton, D. K. (2008). Distribution, normal. In W. A. D. Jr. (Ed.), International encyclopedia
of the social sciences. Gale.

Weisstein, E. W. (2018). Eigenvector. MathWorld.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and
Intelligent Laboratory Systems(2), 37-52.

14

A Montreal’s Existing Metro System

Figure 10: Artistic map of Montreal’s metro system. Taken from the Sociéte de Transport de
Montréal.

15

B Program Code

1 library(dbscan)
2 library(ggplot2)
3 library(mclust)
4 library(geosphere)
5 library(proxy)
6 library(igraph)
7 library(ggmap)
8
9

10 # Domain remapping
11 fit.domain <- function(n, a, b, c, d) {
12 (n-a)/(b-a) * (d-c) + c
13 }
14
15 # Returns latitude of coordinate distance metres to the direction of the current

latitude
16 distance.to.latitude <- function(starting_latitude , distance , direction) {
17 if (direction == "N") { coefficient <- 1 }
18 if (direction == "S") { coefficient <- -1 }
19 return(starting_latitude + (distance/111319.9) * coefficient)
20 }
21
22 # Returns longitude of coordinate distance metres to the direction of the current

latitude & longitude
23 distance.to.longitude <- function(starting_longitude , starting_latitude , distance ,

direction) {
24 if (direction == "E") { coefficient <- 1 }
25 if (direction == "W") { coefficient <- -1 }
26 divisor <- cos(starting_latitude * (pi/180)) * 111319.9
27 return(starting_longitude + (distance/divisor) * coefficient)
28 }
29
30 weight.given.normal.distribution <- function(weight , std_dev , distance) {
31 weight * ((1/(sqrt(2 * pi * std_dev ^ 2))) * exp(-((distance)^2)/(2 * std_

dev)^2))
32 }
33
34 path.cost <- function(distance , combined_weight , std_dev , a, b) {
35 if (distance == 0) {
36 return(0)
37 }
38 m <- a * (distance - 1.5*std_dev) ^ 2 # It ’s squared to favour going through

many stations over skipping from each one
39 n <- 1 / (10^(b * combined_weight))
40 o <- exp(distance - 1.5*std_dev)
41 return(m + n * (1 + 1/o))
42 }
43
44 magnitude <- function(x) sqrt(sum(x^2))
45
46
47 # Load data into dataframe
48 POIs <- read.csv("transit_planner.csv", header = FALSE)
49 colnames(POIs) <- c("id", "google_places_id", "name", "latitude", "longitude", "

weight_determining_type", "weight")
50 POIs$id <- NULL # Delete the column for google_places_id

16

51 POIs$google_places_id <- NULL # Delete the column for google_places_id
52
53
54 # Only selected weighted POIs and change the domain of their weight
55 weighted.POIs <- POIs[POIs$weight > 0 ,]
56 weighted.POIs$weight <- fit.domain(weighted.POIs$weight , 0, max(weighted.POIs$

weight), 0, 10)
57
58
59 # Perform DBSCAN and save cluster to POIs dataframe
60 x <- as.matrix(weighted.POIs[, 2:3])
61 dbscan.results <- dbscan(x, eps = 0.0003, minPts = 65, weights = as.numeric(

weighted.POIs$weight))
62 weighted.POIs$cluster <- as.factor(dbscan.results$cluster) # So ggplot does not

interpolate colors
63
64
65 # Plot all POIs
66 plot(weighted.POIs$longitude , weighted.POIs$latitude , main = "POIs in Montreal",

xlab = "Longitude", ylab = "Latitude", col = adjustcolor("black", alpha=0.15),
cex = 0.1)

67
68
69 # Plot and save map of first round of clusters
70 ggplot(weighted.POIs , aes(x = longitude , y = latitude , color = cluster)) +
71 geom_point(shape = 16, size = 0.1, alpha = 0.15) +
72 theme(panel.background = element_blank(), legend.position = "none") +
73 coord_fixed() + labs(x = "Longitude", y = "Latitude")
74
75 ggplot () +
76 geom_point(data = weighted.POIs[weighted.POIs$cluster %in% c(0) ,], aes(x =

longitude , y = latitude), shape = 16, size = 0.1, alpha = 0.05, color = "
black") +

77 geom_point(data = weighted.POIs [!(weighted.POIs$cluster %in% c(0)) ,], aes(x =
longitude , y = latitude , color = cluster), shape = 16, size = 0.1, alpha = 1)
+

78 theme(panel.background = element_blank(), legend.position = "none", plot.title =
element_text(hjust = 0.5)) +

79 coord_fixed() + labs(x = "Longitude", y = "Latitude") + ggtitle("Clusters of
POIs Found by DBSCAN Algorithm")

80
81
82 # Loop through all clusters to find their centroids and weights
83 cluster.centroids <- data.frame(matrix(ncol = 3, nrow = 0))
84 colnames(cluster.centroids) <- c("cluster", "centroid_latitude", "centroid_

longitude")
85 num.clusters <- max(dbscan.results$cluster) # Find the total number of clusters
86 acceptable.cluster.values <- seq(1, num.clusters)
87 for (this_cluster in acceptable.cluster.values) {
88 centroid_latitude <- weighted.mean(weighted.POIs[weighted.POIs$cluster %in%

this_cluster ,]$ latitude , weighted.POIs[weighted.POIs$cluster %in% this_
cluster ,]$ weight)

89 centroid_longitude <- weighted.mean(weighted.POIs[weighted.POIs$cluster %in%
this_cluster ,]$ longitude , weighted.POIs[weighted.POIs$cluster %in% this_
cluster ,]$ weight)

90 row_to_add <- data.frame(cluster = this_cluster , centroid_latitude = centroid_
latitude , centroid_longitude = centroid_longitude)

91 cluster.centroids <- rbind(cluster.centroids , row_to_add)
92 }

17

93 rm(row_to_add , centroid_latitude , centroid_longitude , this_cluster)
94
95
96 # For each centroid:
97 # Find all the POIs in a given radius and their weights
98 search.radius <- 1500 # in metres; Just over 5 standard deviations
99 cluster.centroids["weight"] <- 0

100 cluster.centroids["line"] <- 0
101 for (this_cluster in acceptable.cluster.values) {
102 this_centroid <- cluster.centroids[cluster.centroids$cluster %in% this_cluster ,]
103
104 lat_north <- distance.to.latitude(this_centroid$centroid_latitude , search.radius

, "N")
105 lat_south <- distance.to.latitude(this_centroid$centroid_latitude , search.radius

, "S")
106 lon_east <- distance.to.longitude(this_centroid$centroid_longitude , this_

centroid$centroid_latitude , search.radius , "E")
107 lon_west <- distance.to.longitude(this_centroid$centroid_longitude , this_

centroid$centroid_latitude , search.radius , "W")
108
109 relevant.POIs.weights <- subset(weighted.POIs , latitude <= lat_north & latitude

>= lat_south & longitude >= lon_west & longitude <= lon_east , select = weight
)

110 relevant.POIs.coords <- subset(weighted.POIs , latitude <= lat_north & latitude
>= lat_south & longitude >= lon_west & longitude <= lon_east , select = c(
latitude , longitude))

111 relevant_POIs_distance_from_centroid <- distHaversine(as.vector(this_centroid[,2
:3]), relevant.POIs.coords)

112
113 sum_of_weights <- sum(weight.given.normal.distribution(relevant.POIs.weights , 2

97.37, relevant_POIs_distance_from_centroid))
114 cluster.centroids[cluster.centroids$cluster %in% this_cluster ,]$ weight <- sum_of

_weights
115 }; rm(sum_of_weights , this_cluster , this_centroid , lat_north , lat_south , lon_east ,

lon_west , relevant_POIs_distance_from_centroid)
116
117 region.westernmost.lon <- min(cluster.centroids$centroid_longitude)
118 region.easternmost.lon <- max(cluster.centroids$centroid_longitude)
119
120 ggplot(cluster.centroids , aes(x = centroid_longitude , y = centroid_latitude , color

= weight)) + geom_point(shape = 16, size = 0.8, alpha = 1) + theme(panel.
background = element_blank (), plot.title = element_text(hjust = 0.5)) + coord_
fixed() + labs(x = "Longitude", y = "Latitude") + ggtitle("Weighted Clusters of
 POIs in Montreal \n as Found by DBSCAN Algorithm , Isolated from Unclustered
POIs")

121
122
123 # Populate distance and weight matrices
124 sum.of.weights <- function(x, y) { x + y }
125 distance.matrix <- distm(cluster.centroids[,2:3], fun = distHaversine)
126 combined.weight.matrix <- as.matrix(dist(cluster.centroids[,4], sum.of.weights))
127
128 cost.matrix <- matrix(Inf , nrow = num.clusters^2, ncol = 3)
129 i <- 1
130 for (x in acceptable.cluster.values) {
131 for (y in acceptable.cluster.values) {
132 cost.matrix[i,] <- c(x, y, path.cost(distance.matrix[x, y], combined.weight.

matrix[x, y], 300, 10^(-5), 100))
133 i <- i + 1

18

134 }
135 }; rm(i, x, y)
136
137
138 # Find the transit lines in the network
139 gmm <- Mclust(rev(cluster.centroids[,2:3]))
140 cluster.centroids$gmm_cluster <- gmm$classification
141 pdf("axes.pdf", width=11, height=8.5)
142 plot(gmm , what = "classification")
143 dev.off()
144
145 ggplot(cluster.centroids , aes(x = centroid_longitude , y = centroid_latitude , color

= as.factor(gmm_cluster))) + geom_point(shape = 16, size = 0.2, alpha = 1) +
theme(panel.background = element_blank()) + coord_fixed() + labs(x = "Longitude
", y = "Latitude")

146
147 # Prepare GMM cluster data
148 gmm.clusters <- list(clusters = 1:gmm$G, cluster.means = gmm$parameters$mean ,
149 covariance.matrices = gmm$parameters$variance$sigma ,

eigenvalues = NULL , eigenvectors = NULL ,
150 termini = NULL , type.determining.magnitude = NULL , average.

magnitude = 0, types = NULL)
151
152 # Find eigenvalues and eigenvectors of each GMM cluster
153 for (G in gmm.clusters$clusters) {
154 eigenstuff <- eigen(gmm.clusters$covariance.matrices[,,G])
155 gmm.clusters$eigenvalues[G] <- list(eigenstuff$values)
156 gmm.clusters$eigenvectors[G] <- list(eigenstuff$vectors)
157
158 # Calculate the vectors
159 scaled.eigen.vec.m <- eigenstuff$vectors[,1] * sqrt(eigenstuff$values[1])
160 scaled.eigen.vec.n <- eigenstuff$vectors[,2] * sqrt(eigenstuff$values[2])
161 vector.a <- as.vector(gmm.clusters$cluster.means[,G]) + scaled.eigen.vec.m
162 vector.b <- as.vector(gmm.clusters$cluster.means[,G]) + scaled.eigen.vec.n
163 vector.c <- as.vector(gmm.clusters$cluster.means[,G]) - scaled.eigen.vec.m
164 vector.d <- as.vector(gmm.clusters$cluster.means[,G]) - scaled.eigen.vec.n
165
166 # Plot eigenvectors
167 plot(c(gmm.clusters$cluster.means[,G][1], vector.a[1], vector.b[1], vector.c[1],

vector.d[1]), c(gmm.clusters$cluster.means[,G][2], vector.a[2], vector.b[2],
vector.c[2], vector.d[2]))

168 arrows(gmm.clusters$cluster.means[,G][1], gmm.clusters$cluster.means[,G][2],
vector.a[1], vector.a[2])

169 arrows(gmm.clusters$cluster.means[,G][1], gmm.clusters$cluster.means[,G][2],
vector.b[1], vector.b[2])

170 arrows(gmm.clusters$cluster.means[,G][1], gmm.clusters$cluster.means[,G][2],
vector.c[1], vector.c[2])

171 arrows(gmm.clusters$cluster.means[,G][1], gmm.clusters$cluster.means[,G][2],
vector.d[1], vector.d[2])

172
173 # Find relevant slope
174 mag.a <- magnitude(gmm.clusters$cluster.means[,G] - vector.a)
175 mag.b <- magnitude(gmm.clusters$cluster.means[,G] - vector.b)
176 if (mag.a >= mag.b) {
177 slope <- vector.a[2] / vector.a[1]
178 gmm.clusters$type.determining.magnitude[G] <- list(mag.a)
179 } else {
180 slope <- vector.b[2] / vector.b[1]
181 gmm.clusters$type.determining.magnitude[G] <- list(mag.b)

19

182 }
183
184 # Find points where line leaves region of interest (point -slope form)
185 lat.westernmost.endpoint <- slope * (region.westernmost.lon - gmm.clusters$

cluster.means[,G][1]) + gmm.clusters$cluster.means[,G][2]
186 lat.easternmost.endpoint <- slope * (region.easternmost.lon - gmm.clusters$

cluster.means[,G][1]) + gmm.clusters$cluster.means[,G][2]
187
188 # Find index of closest stations to endpoints (the termini)
189 current.closest.westernmost.index <- -1
190 current.closest.westernmost.distance <- Inf
191 current.closest.easternmost.index <- -1
192 current.closest.easternmost.distance <- Inf
193
194 current.searchable.clusters <- cluster.centroids[cluster.centroids$gmm_cluster

== G,]
195 for (this_cluster in current.searchable.clusters$cluster) {
196 this_centroid <- current.searchable.clusters[current.searchable.clusters$

cluster %in% this_cluster ,]
197 western.distance <- distHaversine(this_centroid[,3:2], c(region.westernmost.

lon , lat.westernmost.endpoint))
198 eastern.distance <- distHaversine(this_centroid[,3:2], c(region.easternmost.

lon , lat.easternmost.endpoint))
199 if (western.distance < current.closest.westernmost.distance) {
200 current.closest.westernmost.index <- this_centroid$cluster
201 current.closest.westernmost.distance <- western.distance
202 }
203 if (eastern.distance < current.closest.easternmost.distance) {
204 current.closest.easternmost.index <- this_centroid$cluster
205 current.closest.easternmost.distance <- eastern.distance
206 }
207 }
208
209 gmm.clusters$termini[G] <- list(c(current.closest.westernmost.index , current.

closest.easternmost.index))
210
211 }; rm(G, scaled.eigen.vec.m, scaled.eigen.vec.n, vector.a, vector.b, vector.c,

vector.d, mag.a, mag.b, slope ,
212 lat.westernmost.endpoint , lat.easternmost.endpoint , current.closest.

westernmost.index ,
213 current.closest.westernmost.distance , current.closest.easternmost.index ,

current.closest.easternmost.distance ,
214 current.searchable.clusters , this_centroid , this_cluster , western.distance ,

eastern.distance)
215
216 # Prepare igraph data
217 cost.matrix.filtered <- cost.matrix[cost.matrix[,3] > 0 ,]
218 entire.possible.network <- graph.data.frame(cost.matrix.filtered[, 1:2], directed

= FALSE) %>%
219 set_vertex_attr("gmm_cluster", value = cluster.centroids$gmm_cluster) %>%
220 set_vertex_attr("cluster_id", value = cluster.centroids$cluster)
221 E(entire.possible.network)$weight <- cost.matrix.filtered[,3]
222
223 # Prepare line graphing data table
224 line.data.for.drawing <- data.frame(matrix(ncol = 5, nrow = 0))
225 colnames(line.data.for.drawing) <- c("line", "x", "y", "xend", "yend")
226
227
228 # Get average magnitude of each line and determine whether line is metro or train

20

229 gmm.clusters$average.magnitude <- mean(unlist(gmm.clusters$type.determining.
magnitude))

230 for (G in gmm.clusters$clusters) {
231 if (gmm.clusters$type.determining.magnitude[G] <= gmm.clusters$average.magnitude

) {
232 gmm.clusters$types[G] <- list("metro")
233 metro <- TRUE
234 } else {
235 gmm.clusters$types[G] <- list("train")
236 metro <- FALSE
237 }
238
239 if (metro) {
240 western.terminus <- gmm.clusters$termini [[G]][1]
241 eastern.terminus <- gmm.clusters$termini [[G]][2]
242
243 this.metro.line <- induced.subgraph(entire.possible.network , which(V(entire.

possible.network)$gmm_cluster %in% c(G)))
244
245 this.shortest.path <- shortest_paths(this.metro.line , from = match(as.

character(western.terminus), V(this.metro.line)$cluster_id), to = match(as.
character(eastern.terminus), V(this.metro.line)$cluster_id), mode = "in")

246
247
248 # Minimum Spanning Tree
249 this.metro.line.for.tree <- induced.subgraph(this.metro.line ,
250 which(V(this.metro.line) %in%

this.shortest.path$vpath [[1
]]))

251
252 min.spanning.tree <- minimum.spanning.tree(this.metro.line.for.tree)
253 V(min.spanning.tree)$label.cex <- 0.2
254 plot.igraph(min.spanning.tree ,
255 layout = as.matrix(cluster.centroids[cluster.centroids$cluster %in% this.

shortest.path$vpath [[1]]$name , 3:2]),
256 vertex.label.size = "",
257 vertex.size = .2,
258 rescale = FALSE ,
259 xlim = c(min(cluster.centroids[cluster.centroids$cluster %in% this.shortest.

path$vpath [[1]]$name , 3]), max(cluster.centroids[cluster.centroids$
cluster %in% this.shortest.path$vpath [[1]]$name , 3])),

260 ylim = c(min(cluster.centroids[cluster.centroids$cluster %in% this.shortest.
path$vpath [[1]]$name , 2]), max(cluster.centroids[cluster.centroids$
cluster %in% this.shortest.path$vpath [[1]]$name , 2])))

261 title(as.character(G))
262
263
264 # Update clusters to line if more than 5 stations
265 if (length(this.shortest.path$vpath [[1]]) > 5) {
266 cluster.centroids[cluster.centroids$cluster %in% this.shortest.path$vpath [[1

]]$name ,]$line <- G
267
268 # Compile data for minimum spanning tree so it can be drawn in final map
269 for (i in 1:length(E(min.spanning.tree))) {
270 x <- cluster.centroids[cluster.centroids$cluster == as.integer(ends(min.

spanning.tree , E(min.spanning.tree))[i,1]), 3]
271 xend <- cluster.centroids[cluster.centroids$cluster == as.integer(ends(min

.spanning.tree , E(min.spanning.tree))[i,2]), 3]
272 y <- cluster.centroids[cluster.centroids$cluster == as.integer(ends(min.

21

spanning.tree , E(min.spanning.tree))[i,1]), 2]
273 yend <- cluster.centroids[cluster.centroids$cluster == as.integer(ends(min

.spanning.tree , E(min.spanning.tree))[i,2]), 2]
274 row.to.add <- data.frame(G, x, y, xend , yend)
275 colnames(row.to.add) <- c("line", "x", "y", "xend", "yend")
276 line.data.for.drawing <- rbind(line.data.for.drawing , row.to.add)
277 }; rm(x, xend , y, yend , row.to.add , i)
278 }
279
280 } else { # Otherwise , the train line must connect to either a metro station that

reaches the central station or directly to the central station
281
282 }
283 }; rm(G, metro , this.metro.line , this.shortest.path , western.terminus , eastern.

terminus)
284
285
286 # Plot all the lines on one map
287 geographical.map.data <- cluster.centroids[cluster.centroids$line > 0 ,]
288 geographical.map.average.longitude <- mean(geographical.map.data$centroid_

longitude)
289 geographical.map.average.latitude <- mean(geographical.map.data$centroid_latitude)
290 geographical.map.center <- c(lon = geographical.map.average.longitude , lat =

geographical.map.average.latitude)
291 geographical.map.constructor <- get_map(location = geographical.map.center , zoom =

12, source="google", maptype = "roadmap", color="bw")
292 # Add existing stations (from STM)
293 all.existing.stations <- read.csv("stops.csv")
294 relevant.existing.stations <- all.existing.stations[all.existing.stations$location

_type == 1,]
295 # Plot
296 overlay.map <- ggmap(geographical.map.constructor) +
297 geom_point(data = relevant.existing.stations ,
298 aes(x = stop_lon , y = stop_lat), color = "black", shape = 17) +
299 geom_point(data = geographical.map.data ,
300 aes(x = centroid_longitude , y = centroid_latitude , color = as.factor(

line))) +
301 geom_segment(data = line.data.for.drawing , aes(x = x, y = y, xend = xend , yend =

yend , color = as.factor(line))) +
302 theme(panel.background = element_blank(), plot.title = element_text(hjust = 0.5)

) +
303 labs(x = "Longitude", y = "Latitude") +
304 ggtitle("Final Suggested Metro System")
305 overlay.map

22

