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1 Introduction
Magnetic gears are intriguing. How can two objects that are not even physically connected
transfer torque effectively?

Well, just how effectively can they transfer torque?

1.1 Research Question

The research question for this essay is how long can a magnetic gear train can be accelerated at

a given rate before slipping occurs, given the moment of inertia of the driven load? Knowing
this amount of time reveals the sustainability of the acceleration being analyzed.

1.2 Magnetic Gears

Magnetic gears are gears whose teeth are replaced with magnetic fields: magnets of alter-
nating polarities are evenly distributed along the perimeter of the gearwheel, and the fields
of the magnetic “teeth” of each gear interlock.

Magnetic gear trains are systems of magnetic gears whose magnetic fields interlock with
those of adjacent gears. This essay will focus on magnetic gear trains with two gears: a
“driver” gear and a “driven” gear. The driver gear delivers torque to the gear train from
an external source (e.g., a motor). The driven gear is acted upon by the driver gear and
transfers torque to a load. An “accelerating” magnetic gear train is a gear train whose driver
gear is accelerating, which accelerates the driven gear in turn.

1.2.1 Design of Magnetic Gears

I designed custom magnetic gears for use in this exploration. My design was inspired by
that of John Atkinson from his YouTube video Magnetic Gears (2015).

Essentially, I evenly distribute eight strong neodymium magnets along the perimeter of a 3D
printed frame. The magnets alternate in polarity so as to truly interlock with each other’s
magnetic fields. An even number of magnets needs to be used to ensure smooth transmission
of torque, and so as not to have large gaps between each magnet as would occur with, say,
only four or six magnets, eight magnets are used. More than eight magnets would be too
expensive and potentially compromise the strength of the frame. N42 (1.32T) neodymium
disc magnets 0.0250m ± 0.0001m in diameter and 0.0100m ± 0.0001m in height are used1.

In total, two identical gears are assembled and fixed onto their own axles.

1
The magnets were purchased from Indigo Instruments (SKU 44209-10)
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Figure 1: The 3D printed frame of the magnetic gear I designed. All measurements2 are in
mm ± 0.1mm. See Appendix A for my design process.

1.2.2 Work Performed by Magnetic Gears

Figure 2 illustrates how, as the driver gear rotates and one of its magnets begins to attract
a magnet on the driven gear, another pair of magnets is inevitably separated. This demon-
strates that magnetic gears cannot introduce energy to a system: for every joule of potential
energy converted to kinetic energy as the magnets approach, one joule of kinetic energy is
converted back to one joule of potential energy as the magnets separate again.

2
In this essay, measurements on diagrams will be provided in mm to enhance readability. Otherwise, the

Standard International base unit of m is preferred.

2



North

South

Figure 2: A simplified illustration of the magnetic fields between two aligned magnetic
gears with magnets arranged with alternating polarities.

1.3 Hypothesyzing Torque Transfer

Newton’s first law of motion tells us that a torque must act on the driven gear in order for
it to accelerate from rest. This torque comes from the magnetic fields of the accelerating
driver gear interacting with those of the driven gear.

Because the gears in magnetic gear trains do not interlock physically, they can accelerate at
different rates. The driver gear accelerates at the same rate ↵i as its source of torque. The
driven gear will accelerate at a rate ↵o determined in part by the torque applied onto the
driven gear from the driver gear’s magnets.

I hypothesize that the torque between two magnetic gears is a function of the difference in
their relative angular displacements.

I think this because a magnetic dipole with a magnetic dipole moment µ placed in a magnetic
field B has a potential energy Ep equivalent to the dot product of these two vectors (Acosta,
2006):

Ep = µ · B = kµkkBk cos� (1)

where � is the angle between the two vectors. That dipole placed in that magnetic field will
feel a torque ⌧d that will try to align it with the magnetic field, thus minimizing its potential
energy (Acosta, 2006). This torque is equivalent to

⌧d = µ⇥ B = kµkkBk sin� (2)

Because sin� increases as � increases, the greater the angle between the dipole and the
magnetic field, the greater the torque felt by that dipole.

3



This same principle can be used with the magnetic fields. Assuming the magnetic fields
of the driver gear’s magnets are the magnetic field B from the preceding model and the
magnets along the circumference of the driven wheel are the dipoles µ, then the greater the
angle between the two gears, the greater the torque felt by the driven gear.

Calculating this difference in the displacements �⇥ of the driver gear �✓i (i for input) and
the driven gear �✓o (o for output) is straightforward:

�⇥ = �✓i ��✓o (3)

I hypothesize that there exists some function T(�⇥) that yields that torque given �⇥. Using
this function, the acceleration of driven gear given the moment of inertia Io of the load being
driven can be determined using Newton’s second law of motion:

⌧net = I↵ ) ↵ =
⌧net
I

↵o =
T(�⇥)

Io

(4)

Later, we will need to use the differential form of this equation to model the behaviour of
the system. Recalling that acceleration is the second derivative of displacement and that the
displacement of the driver gear accelerating at a constant rate ↵i for �t s is 1/2↵�t2, Eq.
(4) can also be expressed as3

�✓o =
T
⇣

↵i�t2

2 ��✓o
⌘

Io
(5)

1.4 Hypothesizing Slipping

As the driver gear first begins to accelerate, its angular displacement is momentarily greater
than that of the driven gear. Assuming my hypothesis from Section 1.3 is correct, the driven
gear now feels a torque (due to the difference in displacements) and begins to accelerate at
a rate ↵o dictated by T(�⇥) which is not necessarily equal to ↵i.

3
For the sake of readability, Newton’s notation for differentiation will be used throughout this essay,

where �✓ = ! = d�✓
dt and �✓ = ↵ = d2�✓

dt2 . This notation specifically compares a variable (in this case,

displacement) against time (“Newton’s Notation for Differentiation,” n.d.).
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Figure 3: A simplified illustration of the magnetic fields between two misaligned magnetic
gears when �⇥ = 0.25 rad (a torque is trying to accelerate the driven gear).

Now, either one of two things happens. On the one hand, the driver gear could accelerate
so quickly that it “escapes” the magnetic field of the driven gear and no longer accelerates
it. On the other hand, the driven gear could momentarily accelerate at a rate greater than
that of the driver gear in order to reduce the difference in their angular displacements, thus
ensuring the gear continues to accelerate. However, if this were to happen, the driver gear
would also have to eventually decelerate the driven gear because the driven gear cannot
accelerate at a rate greater than the source of its torque indefinitely.

North

Driver Gear Driven Gear

South

Figure 4: A simplified illustration of the magnetic fields between two misaligned magnetic
gears when �⇥ = �0.25 rad (a torque is trying to decelerate the driven gear).

Which of these outcomes occurs depends on just how fast the driver gear is being accelerated
and on the maximum torque the driver gear can apply to the driven gear as dictated by the
T(�⇥) function of that particular gear train.

5



In order to understand this behaviour, the nature of T(�⇥) needs to be determined.

Before doing so definitively, we can predict some of the function’s properties and use this
prediction to validate our results. Namely, T(�⇥) is likely periodic. I say this because the
function models the behaviour of two symmetric rotating gears. Specifically, because the
gears each have eight magnets evenly distributed along their perimeter and the polarity of
the outer face of each magnet alternates, there are likely four periods of T(�⇥) per full
rotation of the gear (2⇡ rad), leading to an expected period of ⇡/2 rad. Assuming this is the
case, then an experiment determining the nature of T(�⇥) does not need to look at a full
rotation of the magnetic gear train, but only ⇡/2 rad.

Furthermore, if T(�⇥) has a period of ⇡/2 rad, then slipping likely occurs in the gear train
when �⇥ surpasses ⇡/2 rad. This is the point of no return: once the displacement of the
driver gear exceeds that of the driven gear by an entire period, slipping has already occurred
and, because the driver gear is accelerating at a rate that the driven gear is clearly unable
to keep up with, slipping will likely continue forever.

6



2 Derivation

This section summarizes the determination of the nature of T(�⇥) and discusses the moment
of inertia Io of the driven gear.

2.1 Generating the Torque Curve

The nature of T(�⇥) will be determined experimentally.

2.1.1 Variables

The variables of this experiment are summarized in Table 1 below.

Table 1: Variables in Torque Curve Generation

Variable Value

Independent Angular displacement of the driver gear
Dependent Torque felt by the driven gear
Controlled Magnetic gears used As designed in Section 1.2.1

Displacement of driven gear 0.00� ± 0.25�

Separation of the gears 0.045m ± 0.001m

Note that this separation of the gears (0.045m ± 0.001m) is chosen because any closer and
the pull of the magnets begins to bend the axles they are mounted on. Any farther and
there would not be as significant a variation in the torque applied from the driver gear to
the driven gear as a function of their displacements.

7



2.1.2 Apparatus
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Figure 5: The apparatus used to produce the torque curve. All measurements are in
mm ± 1mm.

To generate the torque curve, the gears are positioned on top of each other.

The top gear is the driven gear, and a long arm extending from its centre is attached to
it. This arm serves to control the angular displacement of the gear with stability. The
displacement is measured with a Vernier rotary motion sensor (precise to 0.25�) attached to
the end of the axle.

As for the driven gear, a long arm extending well beyond its diameter is mounted onto its
axis and attached to the gear’s frame such that the arm is parallel to the ground4. Digital
scales are placed no more than 0.0010m ± 0.0001m under the ends of the arm (without
touching them)5. A different Vernier rotary motion sensor is mounted to the end of the
driven gear’s axle to measure its displacement. As the driver gear is rotated, the torque it
applies on the driven gear rotates the latter such that the one end of its arm pushes down
on the scale, yielding a reading that is recorded6. After a certain displacement, the arm of
the driven gear begins to push on the other scale. Because the arm that is fixed to the gear
pushes against the scales, its angular displacement is negligible.

It is important that magnetic materials other than the magnets on the gears be present in
the apparatus so as not to interfere in the torque transfer. As such, the beams suspending
the gears were wooden and the arms attached to the gears were plastic.

The experiment is repeated a total of three times.

4
This is verified with a level.

5
This value is verified using precise calipers.

6
The peculiar nature of this reading will be discussed briefly in Section 2.1.4 and in detail in Appendix

B.
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2.1.3 Raw Data

In total, 177 data points were collected for this trial of the experiment. The minimum driver
gear angular displacement, being 0.00� ± 0.25�, is the first data point that no reading was
provided by the scales. The maximum driver gear angular displacement, being 83.00�±0.25�,
is the point at which the arm attached to the driver gear to precisely control its displacement
was almost vertical in the air and can no longer be rotated without disturbing the rest
of the apparatus, potentially leading to systematic error in the data collected thereafter.
Maintaining a perfectly constant increase in the displacement of the driver gear from one
data point to the next was difficult. However, I sought to have an increment of about 0.25�
between each data point as I approached where I suspected a peak would occur in the T(�⇥)
function so as to have sufficient data to precisely analyze, whereas an increment of about
0.75� during where I suspected the seemingly linear intervals of the curve would suffice.
Three trials were performed to minimize random error.

A sample of the raw data collected in this trial is provided in Table 2.

Table 2: Sample Raw Data from Trial 1 of
Torque Curve Generation

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

1 0.00 0.00 0.00 0.00
2 0.25 0.00 0.00 0.11
3 0.25 0.00 0.00 0.41
...

...
...

...
...

113 42.25 0.00 0.00 2.32
114 42.25 0.00 0.00 1.63
115 42.75 0.00 0.85 0.00
...

...
...

...
...

175 82.00 0.00 26.99 0.00
176 82.50 0.00 24.75 0.00
177 83.00 0.00 22.82 0.00

Furthermore, the arm attached to the driven gear has a total length of 0.824m ± 0.001m
and a width of 0.0552m± 0.0005m.

The full raw datasets from each trial are available in Appendix I.
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2.1.4 Processed Data

Next, the data needs to be processed. An example of each calculation performed is provided
using data point 114 of Trial 1.

First, each angular measurement needs to be converted from degrees into radians, the Stan-
dard International unit for an angle. Then, the difference in angular displacements and its
uncertainty can be found7:

�✓irad = �✓ideg ·
2⇡ rad

360�

= 42.25� · 2⇡ rad

360�

= 0.737 rad

U
�✓irad

= U
�✓ideg

· 2⇡ rad

360�

= 0.25� · 2⇡ rad

360�

= 0.004 rad

(6)

�✓orad = ��✓odeg ·
2⇡ rad

360�

= 0.00� · 2⇡ rad

360�

= 0.000 rad

U
�✓orad

= U
�✓odeg

· 2⇡ rad

360�

= 0.25� · 2⇡ rad

360�

= 0.004 rad

(7)

�⇥ = �✓irad ��✓orad
= 0.737 rad� 0.000 rad

= 0.737 rad

U
�⇥

= U
�✓irad

+ U
�✓orad

= 0.004 rad + 0.004 rad

= 0.008 rad

(8)

Recall that a torque ⌧ is a force F acting at a distance r from an axis of rotation:

⌧ = r ⇥ F (9)

The radius r at which the force is pushing on the scale needs to be calculated.

7
In this essay, the variable Un denotes the absolute uncertainty of the variable n. An uncertainty Urel n

denotes the relative uncertainty of n expressed as a decimal. For example, an uncertainty of 1% has a relative

uncertainty Urel of 0.01.
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Figure 6: The geometry of the arm mounted to the driven gear (not to scale). All
measurements are in mm ± mm

krk =
1

2

p
w2 + `2

=
1

2

q
(0.0552m)2 + (0.824m)2

= 0.413m

� = arctan

✓ 1
2w
1
2`

◆

= arctan

✓
0.0276m

0.412m

◆

= 0.0669 rad

Urel krk =
1

2
(2Urel w + 2Urel `)

=
0.0005m

0.0552m
+

0.001m

0.824m
= 0.0103

Urel � = Urel w + Urel `

=
0.0005m

0.0552m
+

0.001m

0.824m
= 0.0103

(10)

Recall that the readings the scales were producing were not direct force readings themselves.
In order to convert these readings of gram-force to the Standard International unit of New-
tons, we multiply them by the gravitational constant 0.00981N g�1 (Thompson & Taylor,
2008). If the driven arm is pushing on the right scale, the torque will be positive because the
driver gear is accelerating the driven gear. If the driven arm is pushing on the left scale, the
torque will be negative because the driver gear is decelerating the driven gear. Furthermore,
note that gravity is negligible because, essentially, the arm attached to the driven gear was
perpendicular to gravity. This is elaborated on in Appendix B.
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* Note that     is greatly exaggerated.

Digital Scale

Figure 7: A force diagram describing the observations at each end of the arm mounted to
the driven gear where the arm meets the scale.

kFappk = kF?k

⌧ =
krkkFappk
cos (�+ �)

=
0.413m · 1.63 g · 0.00981N g�1

cos (0.0669 rad + 0 rad)

= 0.00662Nm

(11)

Urel ⌧ = Urel krk + U
rel kFk

+ Urel �

= 0.0103 +
0.01 g

1.63 g
+ 0.0103

= 0.0267

U⌧ = Urel ⌧ · ⌧
= 0.0267 · 0.00662Nm

= 0.0002

(12)

The final value for the torque applied is rounded to the maximum precision permitted by
the absolute uncertainty (0.0066Nm± 0.0002Nm).

Table 3 provides a sample of the processed data from Trial 1. The complete processed
datasets from all trials are available in Appendix J.
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Table 3: Sample Processed Data from Trial 1 of
Torque Curve Generation

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

1 0.000 0 ± 0
2 0.003 0.00045 ± 0.00005
3 0.003 0.00166 ± 0.00007
...

...
...

...
...

113 0.737 0.0094 ± 0.0002
114 0.737 0.0066 ± 0.0002
115 0.747 -0.00345 ± 0.00009
...

...
...

...
...

175 1.431 -0.110 ± 0.002
176 1.440 -0.100 ± 0.002
177 1.449 -0.093 ± 0.001

When the resulting torques are plotted against their respective differences in angular dis-
placements, the nature of the T(�⇥) function is revealed.

Figure 8: Torque Curves for all Trials
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Figure 8 demonstrates the consistency of the collected data across all three trials, suggesting
a high degree of precision8.

2.1.5 Data Interpolation

Even though we often try to generalize datasets with a mathematical trend, we will not do
that here. At first glance, the data appears to be sinusoidal: the curve passes through the
origin (0Nm of torque was produced for a difference in displacements of 0 rad) and appears
to oscillate. Figure 9 illustrates an attempt at fitting a sine wave to the data using a program
I wrote available in Appendix E. However, as can be seen, the data is not quite sinusoidal,
with flatter peaks than expected. Furthermore, we cannot be sure that a torque curve
generated under different conditions for a different gear train (e.g., gears closer together or
farther apart, driver gear and driven gear with different numbers of magnets, stronger or
weaker magnets) would follow this same trend.

Figure 9: Torque Curve for Trial 1 with Attempted Sine Wave Fit

For these reasons, we are not going to fit a specific type of mathematical function to the
data. Yet, we still need to know the magnitude of the generated torque for any difference
in angular displacements, even if the desired value is not one I explicitly measured. So, we
will interpolate the data. Taking this approach means that any torque curve can be used to

8
Note that while the error bars of each point are present on the plot, they are too small to be rendered.
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determine acceleration regardless of the nature of the curve and the ease of precisely fitting
a function to said data.

To accomplish this, I wrote a Python program based on the open-source SciPy.Interpolate
library that comes up with a spline interpolation9 for each trial. The program can be found
in Appendix F, and the spline interpolations it fit to the data from each trial can be seen in
Figure 10.

Figure 10: Torque Curves with Spline Interpolation Fits for All Trials

The fact that the spline interpolations closely follow the data points for each trial shows that
they are precise fits. While the error associated with a fit would normally be determined
using something like maximum and minimum slopes found by considering the uncertainty of
each point used to produce said fit, this is not no straightforward with spline interpolations.
The torque felt by the driven gear given the difference in the displacements of the driver and

9
Spline interpolation essentially fits polynomials to each pair of points in a dataset while taking the

proximity of other points into account so as to produce a smooth, precise curve (n.d.). Spline interpolations

will not necessarily pass through all the points in the dataset that produced them.
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driven gears can be determined by averaging the three individual torque values outputted
by each spline interpolation at the given difference in displacements, and the uncertainty of
this value can be determined by taking a range uncertainty.

The period of the processed datasets as shown in Figure 8 appears to be approximately
1.5 rad, which is close to the expected value of ⇡/2 rad (approximately 1.57 rad), representing
one quarter rotation of the driver wheel. This suggests a certain degree of accuracy in the
dataset.

In order to definitively calculate the period of each spline interpolation, each wave was
truncated once it reached ⌧ = 0 rad for the third time: the first time ⌧ is 0 rad is at the
origin, the second time is halfway through the period, and the third time is at the end of
the period. The �⇥ value for each of these points is given in Table 4, which also provides
the average period10 of the entire dataset.

Table 4: Periods of Spline Interpolations

Trial Period
# (rad ± rad)

1 1.51
2 1.49
3 1.50

Average 1.50± 0.01

%accuracy =
1.50 rad
⇡/2 rad

⇡ 96% (13)

The average period of the dataset does fall does slightly short of the expected value of ⇡/2rad.
However, at 96% of its expected value, this error is insignificant and suggests a fairly accurate
result.

This error could likely have been reduced by collecting data over one full period of the
curve. However, the apparatus did not permit a precise measurement of driver angular
displacements of beyond ⇠ 83�. This could have been improved in the experimental setup.

2.2 Moment of Inertia & Resistive Torques

The moment of inertia Io of the driven gear also needs to be known to calculate acceleration.
However, in the case of this exploration, sustainability can be predicted for any arbitrary
moment of inertia. However, I did determine the moment of inertia of my driven gear
mounted on its axle out of curiosity in Appendix C.

10
The uncertainties of the individual periods for each trial could not accurately be determined but are

irrelevant as a range uncertainty is used to find the average period of the datasets.
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Given a restrictive word limit, the main body of this essay will focus on accelerating magnetic
gear trains with constant moments of inertia. However, analyses considering moments of
inertia that vary with velocity (as is the case when considering air resistance) and decelerating
systems are available in Appendix H.
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3 Implementation
Recall from Eq. (5) that

�✓o =
T
⇣

↵i�t2

2 ��✓o
⌘

Io

and that the T(�⇥) function is modelled by three spline interpolations. This differential
equation cannot be solved11. To approximate it, numerical methods must be used.

3.1 Using the Classical Runge-Kutta Method

The numerical method we will use is the classical Runge-Kutta method12.

The classical Runge-Kutta method requires starting conditions for the system as well as an
increment h for the independent variable (being time elapsed). The error of the method is
proportional to h5; as h decreases, we get significantly more accurate results at the expense
of more computations to perform. I wrote a program to perform these calculations; it is
available in Appendix G.

The Runge-Kutta methods are only able to approximate first-order differential equations.
However, our acceleration function is a second-order equation. Therefore, it needs to be
converted to a system of first-order equations. To do this, we begin by substituting !o for
�✓:

!o =
T
⇣

↵i�t2

2 ��✓o
⌘

Io
(14)

11
This is the case with many differential equations.

12
The Runge-Kutta methods are a group of numerical methods for approximating differential equations by

taking a weighted average slope of several preceding approximated points to estimate the next one (Derrick

& Grossman, 1981; O’Neil, 1983). While there are various techniques within the broader scope of the

Runge-Kutta methods, the “classical Runge-Kutta method” is the most common.
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It therefore follows that13:

!o (�t) =
d�✓o
d�t

) d�✓o = !o (�t) d�t

!o =
d!o

d�t
= ↵o

⇣
�t,�✓o (�t) ,!o (�t)

⌘

d!o = !o d�t = ↵o

⇣
�t,�✓o (�t) ,!o (�t)

⌘
d�t

�✓o (�t+ h) = �✓o (�t) + d�✓o
!o (�t+ h) = !o (�t) + d!o

�✓o next = ↵
⇣
�t+ h,�✓o (�t+ h) ,!o (�t+ h)

⌘

(15)

For our system, we know that at �t = 0 s, the driven gear is not and has not been rotating.
These are sufficient initial conditions.

�✓o (0 s) = 0 rad

!o (0 s) = 0 rad s�1
(16)

The classical Runge-Kutta method says that

d�✓o =
1

6
(�1 + 2�2 + 2�3 + �4)

d!o =
1

6
(µ1 + 2µ2 + 2µ3 + µ4)

(17)

where

�1 = h!o (�t)

�2 = h
⇣
!o (�t) +

µ1

2

⌘

�3 = h
⇣
!o (�t) +

µ2

2

⌘

�4 = h (!o (�t) + µ3)

µ1 = h↵o

⇣
�t,�✓o (�t) ,!o (�t)

⌘

µ2 = h↵o

✓
�t+

h

2
,�✓o (�t) +

�1

2
,!o (�t) +

µ1

2

◆

µ3 = h↵o

✓
�t+

h

2
,�✓o (�t) +

�2

2
,!o (�t) +

µ2

2

◆

µ4 = h↵o

✓
�t+

h

2
,�✓o (�t) + �3,!o (�t) + µ3

◆

(18)

By performing these computations thousands of times, we can model the driven gear’s dis-
placement, velocity, and acceleration over time.

13
Note that �✓o (�t) and !o (�t) refer to the driven displacement �✓o and the driven velocity !o at time

�t, respectively, and not the product of these values and time elapsed.
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3.1.1 Avoiding Significant Error

For as useful as the Runge-Kutta method is in approximating our differential equation,
there is a catch with how it pertains to our needs. The period of our torque wave is
1.50 rad ± 0.01 rad. If either gear displaces more than 1.50 rad ± 0.01 rad in a single time
interval of h s, the Runge-Kutta algorithm errs: it neglects the torque of the driver gear on
the driven gear that was applied between that time interval of [�t,�t+ h[.

For this reason, a fail-safe needs to be built into my Runge-Kutta program to detect if this
error occurred. The program halts if the driver gear exceeds a displacement of ⇡/24 rad in
any single time interval. This value guarantees almost 12 time intervals per period of the
torque wave—enough measurements to ensure accuracy without being too restrictive in the
algorithm’s operation.

3.2 Error Propagation with the Runge-Kutta Method

Because the error associated with the classical Runge-Kutta method is so insignificant com-
pared to the uncertainty of the T(�⇥) function, it will be ignored.

On the other hand, the provided driver gear acceleration and the moment of inertia of the
driven gear have uncertainties that need to be considered.

Recall from Eq. (5) that

�✓o =
T
⇣

↵i�t2

2 ��✓o
⌘

Io

Let U
T(�⇥)

be the range uncertainty of the yielded torques from the spline interpolations:

U
T(�⇥)

=
T(�⇥)max � T(�⇥)min

2
(19)

Therefore, the uncertainty associated with the driven acceleration is calculated as follows:

U
�✓o

= U
T(�⇥)

+�✓o

✓
U↵i

↵i
+

UIo

Io

◆
(20)

The uncertainty of the velocity and displacement of the driven gear at a given moment are
calculated by treating the uncertainty of each value as the value itself:

�✓o = ↵o�t ) U
�✓o

= U↵o
h

�✓o = �✓o�t+
1

2
↵o�t2 ) U

�✓o
= U

�✓o
h+

1

2
U↵o

h2
(21)
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If slipping is deemed to begin when �⇥ exceeds the period of the torque curve14, being
1.50 rad ± 0.01 rad, then slipping could theoretically begin as early as the first measurement
of �⇥ plus its uncertainty U

�⇥
exceeds 1.49 rad. Similarly, slipping could theoretically begin

as late as the last value of �⇥ minus its uncertainty U
�⇥

that is less than 1.51 rad. The
Runge-Kutta program will output this interval during which slipping could begin.

14
Because the period of the torque curve we generated is 1.50 rad ± 0.01 rad, slipping will be detected by

determining when the difference in displacements between the two gears reaches 1.50 rad ± 0.01 rad instead

of the expected ⇡/2 rad.
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4 Evaluation
Finally, we are ready to predict the sustainability of an accelerating magnetic gear train.

4.1 Predicting Sustainability Using the Runge-Kutta

Program

The Runge-Kutta program produces four graphs: an acceleration-time graph, a velocity-
time graph, a graph looking at the difference in displacements between the two gears over
time, and displacement-time graph. Analyzing these graphs will reveal the behaviour of the
system as it accelerates.

Consider a magnetic gear train with the T(�⇥) function determined in Section 2.1 and a
constant moment of inertia of 0.00257 kgm2 ± 0.00006 kgm2 as found in Appendix C (al-
though for our purposes, this value could be any arbitrary constant). This scenario replicates
a magnetic gear train accelerating in a frictionless vacuum.

To begin, we will look at the behaviour of the system for the first two seconds of acceleration
when the driver acceleration ↵i is 70.0 rad s�2 ± 0.5 rad s�2. The output of the Runge-Kutta
program is shown in Figure 1115 16 17.

15
The command used to generate these plots is python runge-kutta.py 70.0+-0.5 2 0.0001

0.00257+-0.00006 0+-0 0+-0.
16

Uncertainty on each plot is represented by the lightly shaded area surrounding each curve. It may be

too small to be rendered given the hypothetical uncertainty values I have used.
17

Additional graphs of the gears’ velocities and displacements in isolation are provided for clarity.
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Figure 11: Runge-Kutta Program Output Given ↵i = 70.0 rad s�2 ± 0.5 rad s�2 and
h = 0.0001 s for First 2 s of Acceleration
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Already, these graphs reveal a lot about the behaviour of the driven gear while the driver gear
is accelerating. In the acceleration-time plot, the acceleration of the driven gear does indeed
regularly surpass that of the driver gear to minimize the difference in their displacements,
thereby avoid slipping and demonstrating that my hypothesis from Section 1.4 is at least
partially correct. In fact, the difference in displacements never surpasses the predicted critical
value of 1.50 rad ± 0.01 rad, suggesting that slipping is not happening in this time frame.
Furthermore, the velocity of the driven gear oscillates around that of the drive gear, showing
that they are, on average, accelerating at the same rate; no slipping is occurring.

Next, we will try to induce slipping in this same system. Figures 1218 and 1319 show the
output of the Runge-Kutta program when ↵i is 80.0 rad s�2 ± 0.5 rad s�2 for the first two
seconds and half second of acceleration, respectively.

Figure 12: Runge-Kutta Program Output Given ↵i = 80.0 rad s�2 ± 0.5 rad s�2 and
h = 0.0001 s for First 2 s of Acceleration

18
The command used to generate these plots is python runge-kutta.py 80.0+-0.5 2 0.0001

0.00257+-0.00006 0+-0 0+-0.
19

The command used to generate these plots is python runge-kutta.py 80.0+-0.5 0.5 0.00001
0.00257+-0.00006 0+-0 0+-0.
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Figure 13: Runge-Kutta Program Output Given ↵i = 80.0 rad s�2 ± 0.5 rad s�2 and
h = 0.00001 s for First 0.5 s of Acceleration

It is clear that slipping is occurring: in the displacement-time plot, the driven gear stops dis-
placing at the same rate as the driven gear. Furthermore, the difference in the displacements
of the gears never reaches 0 rad again after beginning to accelerate, and the critical value of
1.50 rad± 0.01 rad is surpassed after 0.320 s± 0.004 s of acceleration20. The acceleration-time
plot interestingly shows the driven gear trying to catch up to the driver gear by momentarily
accelerating at a greater rate than it, but then the driver gear “escapes” the pull of the driven
gear. After this happens, the acceleration of the driven gear oscillates around 0 rad s�2. By
consequence, the velocity of the driven gear stops matching that of the driver gear. This
demonstrates that my hypothesis from Section 1.4 is correct.

4.2 Assumptions & Limitations

It goes without saying that analyzing an accelerating system for the first two seconds of
its acceleration is not sufficient on its own to determine the sustainability of this accelera-
tion. However, in conjunction with an understanding of the underlying physics dictating the
system’s behaviour, doing so can validate our hypotheses.

20
This value is provided by the Runge-Kutta program.
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The T(�⇥) function referred to throughout this essay was produced from still measurements.
It is being assumed that the nature of this function persists when it describes the relationship
of two rotating objects. However, this is not unreasonable as magnetic fields do move at the
speed of light.
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5 Conclusions

5.1 Further Work

There is still a lot that is left to be explored in the realm of magnetic gears.

For example, how does the predictive model I have developed made come into play when
there are more than two gears in the magnetic gear train? Do the magnetic fields of nearby
gears that are neither the driver nor the driven gear of an accelerating pair interfere in the
interaction of the latter two?

5.2 Final Remarks

The research question I set out to answer was how long can a magnetic gear train can be

accelerated at a given rate before slipping occurs, given the moment of inertia of the driven

load?

Ultimately, Figures 11 and 12 from Section 4 reveal that there is some value of ↵i between
70 rad s�2 and 80 rad s�2 that represents the maximum rate ↵max at which the magnetic gear
train with these properties can be accelerated.

In this essay, I have discussed why and demonstrated that any accelerating magnetic gear
train in a frictionless vacuum will accelerate forever provided it does so at a rate ↵i less than
the maximum rate ↵max determined using a Runge-Kutta approximation. Otherwise, the
gear begins slipping practically immediately and indefinitely.

Word Count: 3998
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A Design of Magnetic Gear
Frame

ø 25.0

ø 177.8

38.1

38
.1

10
.0

I designed the frame of my magnetic gears in Google Sketchup. It is in the shape of a
hexadecagon (a 16-sided polygon). On every other edge of the polygon, a cylinder with the
same dimensions as the magnets purchased was hollowed out so as to create a slot for them
to slide into. Otherwise hollow sections of the frame (i.e., where no magnets were inserted)
were trimmed away to save material and to reduce printing time. The magnets were inserted
into their slots and epoxied into place as shown in Figure 2.
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B Insignificance of Gravity in
Torque Curve Generation

* Note that     is greatly exaggerated.

Digital Scale

This is the same diagram as shown in Figure 7.

Because the arm attached to the driven gear did have the ability to rotate slightly, there is an
additional angle � between the arm and the surface of the scale that needs to be considered.
This excess rotation is necessary because when the arm attached to the driven gear pushed
on the scale, it needs to do so from its corner. Should the arm have made contact parallel to
the scale, it would have done so over a range of the arm’s length, making it difficult to define
the exact radius at which the force was being applied. The presence of the angle � between
the arm and the ground means that gravity could theoretically have also applied a torque
on the arm that needs to be considered as well. However, in reality, � is demonstrated to
be 0.000 rad ± 0.004 rad by the Vernier sensor, demonstrating that the torque applied by
gravity is negligible. Note that the relative uncertainty of � cannot be determined for a
measurement of 0.000 rad. However, the repeatability of this value across each data point is
sufficient evidence to ignore this error as it is insignificant.
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C Determining the Moment of
Inertia of the Driven Gear

Recall that the moment of inertia Io of the driven gear needs to be known in order to
determine the acceleration of the gear given the torque that acts on it. While the exact
value of Io for the driven gear I designed was not necessary to explore the sustainability
of the acceleration of any driven gear, I was still curious as to the approximate order of
magnitude of a moment of inertia for an object with roughly the same mass and shape.

There are two ways the moment of inertia of my driven gear could be determined: by
calculating it with calculus or by experimentation.

Moment of inertia can be defined as the distribution of mass in an object with respect to
the distance r from the axis around which the object rotates:

I =

Z
r2dm (22)

Given a complex shape like the frame of the driven gear with an uneven distribution of mass,
this becomes very complicated very quickly. The moment of inertia could be approximated
using known moments of inertia for simpler shapes, but even then, this would only be an
approximation.

Alternatively, the moment of inertia could be determined experimentally using a bifilar
pendulum (French, 2016). A bifilar pendulum is a pendulum where the mass m being
oscillated is suspended by two lines of length L separated by a distance b. Essentially, when
the suspended mass is twisted and released, the period T of its oscillations can be used to
estimate its moment of inertia I using the following equation:

I =
mgb2T 2

4⇡2L
(23)

where g is the acceleration due to gravity.

C.1 Variables

For this experiment, the independent variable is the moment of inertia of the gear. The
dependent variable is the period of the oscillations of the gear. The controlled variables
are the gear attached to the bifilar pendulum, the string used to suspend the gear (sewing
thread), the length of the string (0.562m ± 0.001m), and the separation of the strings
(0.0762m ± 0.0005m).
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C.2 Apparatus

The driven gear, mounted on its axle, is attached to two lengths of sewing thread of negligible
mass and suspended as shown in Figure 14.

L 
=

 5
62

 ±
 1 b = 76.2 ± 0.5

Figure 14: The setup of the bifilar pendulum. All measurements are in mm ± mm.

The gear is twisted and then released such that its translational motion is negligible (only
rotational motion should be observed). After one oscillation, a timer is started and the
mass is allowed to oscillate ten more times. After the ten oscillations, the timer is stopped.
This number of allowed oscillations was chosen so as to minimize measurement uncertainty
without giving too much time for the gear to begin to decelerate due to air resistance.
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C.3 Raw Data

Table 5: Times for Ten Oscillations of Driven Gear in Bifilar Pendulum

Data Point
#

Time for 10 Oscillations
(s ± 0.01 s)

1 26.93
2 26.90
3 26.96
4 26.97
5 27.00

The length of each strand of sewing thread from which the gear is suspended is 0.562m ±
0.001m. The separation between the two threads is consistent along the entire lengths of
the threads, at 0.0762m ± 0.0005m. The combined mass of the threads is 0.00 g ± 0.01 g.
The mass of the gear and its axle is 0.55110 kg ± 0.00005 kg.

C.4 Processed Data

An example of each required calculation is provided in this section using data point 1 from
Table 5.

Eq. (23) needs the period T of one oscillation, not the time for ten. So, the period is
calculated by dividing the time for ten oscillations by ten. However, while the timer used is
accurate to the nearest hundredth of a second, I (who started and stopped the timer) am not
nearly as fast. Therefore, the time for each oscillation could only be precise to the nearest
tenth of a second.

10T = 26.9 s± 0.1 s ) T = 2.69 s± 0.01 s (24)

Next, an average period is calculated by averaging the individual periods. The uncertainty
of this average is calculated by determining the range uncertainty of the data set.

T =
2 · 2.69 s + 3 · 2.70 s

5
= 2.70 s

UT =
Tmax � Tmin

2

=
2.70 s� 2.69 s

2
= 0.01 s

(25)

The average period T is 2.70 s ± 0.01 s.
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Table 6: Period of Driven Gear in Bifilar Pendulum

Data Point
#

Period
(s ± 0.01 s)

1 2.69
2 2.69
3 2.70
4 2.70
5 2.70

Average 2.70

Using Eq. (23), the moment of inertia of the driven gear Io could be calculated:

Io =
mogb2T

2

4⇡2L

=
(0.55110 kg) (9.81m s�2) (0.0762m)2 (2.70 s)2

4⇡2 (0.562m)

= 0.00257 kgm2

(26)

Urel Io = Urel mc + 2 · Urel b + 2 · Urel T + Urel L

=
0.00005 kg

0.55110 kg
+ 2 · 0.0005m

0.0762m
+ 2 · 0.01 s

2.70 s
+

0.001m

0.562m

= 0.0224

UIo = Io · Urel Io = 0.00257 kgm2 · 0.0224 = 0.00006 kgm2

(27)

The moment of inertia of the driven gear Io is determined to be 0.00257 kgm2 ± 0.00006 kgm2.
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D Data Processing Program
This program processses the raw data for use in the various other programs that follow. The
raw dataset is embedded in this program so all the programs can be run on any computer.

1 from math import pi, sqrt, atan, floor, cos
2 import numpy as np
3 from scipy.interpolate import UnivariateSpline # v0.19.1 must be used
4
5
6 #
7 # PROCESS RAW DATA
8 #
9

10 length_of_arm = (0.824, 0.001/0.824)
11 width_of_arm = (0.0552, 0.0005/0.0552)
12 diagonal_of_half_arm = (sqrt( (length_of_arm[0]/2)**2 + (width_of_arm[0]/2)**2 ), 0.5 * (2 * length_of_arm[1]

+ 2 * width_of_arm[1]) )
13 phi = (atan( (width_of_arm[0]/2) / (length_of_arm[0]/2) ), 0.5 * width_of_arm[1] + 0.5 * length_of_arm[1])
14
15 n = 100000
16 period = []
17
18 #
19 # TRIAL 1
20 #
21
22 trial_1_data = np.array([[0.0, 0.0], [0.25, 0.11], [0.25, 0.41], [0.25, 0.88], [0.5, 1.5], [0.5, 2.18],

[0.75, 2.87], [0.75, 3.64], [1.0, 4.8], [1.0, 5.4], [1.5, 6.97], [1.5, 7.86], [1.75, 8.58], [1.75,
9.38], [2.0, 10.47], [2.0, 11.07], [2.25, 12.01], [2.5, 12.83], [2.5, 13.78], [2.75, 14.41], [2.75,
15.43], [3.0, 15.74], [3.0, 16.51], [3.25, 16.97], [3.25, 17.78], [3.25, 17.92], [3.75, 20.37], [4.25,
23.7], [4.75, 25.74], [5.75, 30.23], [6.25, 32.48], [6.5, 34.59], [7.0, 35.95], [7.5, 38.28], [7.75,
39.81], [8.25, 41.42], [8.75, 43.34], [9.25, 44.86], [9.75, 46.15], [10.0, 47.71], [10.5, 48.88],
[10.75, 49.62], [11.25, 50.35], [11.5, 51.33], [12.25, 52.53], [13.0, 53.77], [14.0, 55.11], [14.5,
55.91], [14.75, 56.12], [15.0, 56.09], [15.25, 56.13], [15.25, 56.03], [15.5, 56.24], [15.75, 56.3],
[16.0, 56.58], [16.25, 56.8], [16.75, 57.07], [17.25, 57.34], [17.75, 57.45], [18.0, 57.68], [18.5,
57.88], [19.25, 57.83], [20.0, 58.16], [20.5, 57.93], [21.0, 58.13], [21.25, 58.05], [21.75, 58.05],
[22.0, 57.9], [22.25, 57.81], [22.75, 57.84], [23.0, 57.81], [23.25, 57.78], [23.75, 57.76], [24.25,
57.71], [24.5, 57.58], [24.75, 57.48], [25.25, 57.3], [25.5, 57.19], [25.75, 56.98], [26.0, 56.74],
[26.25, 56.43], [26.5, 55.94], [26.75, 55.77], [27.0, 55.78], [27.25, 55.55], [27.5, 55.5], [28.25,
55.38], [29.25, 54.0], [29.5, 52.36], [30.5, 52.13], [30.75, 50.52], [31.5, 49.5], [32.25, 47.31],
[32.75, 45.68], [33.25, 43.57], [33.75, 41.0], [34.25, 38.12], [35.5, 34.63], [35.75, 32.84], [36.25,
30.84], [37.0, 28.35], [37.25, 26.26], [37.75, 24.3], [38.25, 22.65], [38.5, 21.2], [39.0, 19.47],
[39.25, 17.36], [39.75, 15.27], [40.25, 12.64], [40.5, 11.11], [41.0, 8.6], [41.5, 5.9], [42.25, 2.32],
[42.25, 1.63], [42.75, -0.85], [42.75, -1.91], [43.25, -3.52], [43.5, -5.34], [44.0, -7.92], [44.25,
-9.03], [44.5, -10.13], [44.5, -11.25], [45.0, -12.82], [45.25, -13.76], [46.0, -17.43], [46.0, -18.42],
[46.5, -21.14], [47.25, -23.91], [47.75, -26.51], [48.5, -29.7], [49.0, -31.57], [49.5, -33.66], [50.25,
-36.76], [50.75, -38.15], [51.25, -38.77], [52.0, -40.93], [52.75, -43.15], [53.5, -44.83], [54.25,
-46.91], [54.75, -48.08], [55.5, -49.33], [56.0, -50.54], [56.5, -51.31], [56.5, -52.11], [56.75,
-52.21], [57.5, -52.99], [58.25, -53.91], [59.25, -54.5], [60.5, -54.93], [61.0, -54.89], [61.75,
-55.11], [62.25, -55.19], [63.0, -55.05], [63.25, -55.34], [63.75, -55.14], [65.5, -55.19], [67.0,
-54.87], [68.5, -54.39], [69.0, -54.06], [70.25, -53.56], [71.0, -52.96], [72.0, -52.24], [72.5,
-51.67], [73.75, -50.62], [74.0, -50.18], [76.5, -46.2], [77.25, -44.59], [77.75, -43.24], [78.25,
-41.73], [78.75, -40.36], [79.25, -38.44], [79.75, -36.99], [80.5, -33.42], [81.25, -31.15], [82.0,
-26.99], [82.5, -24.75], [83.0, -22.82]])

23 x1 = trial_1_data[:,0] # Difference in angular displacements (degrees)
24 y1 = trial_1_data[:,1] # Scale reading (grams)
25
26 x1 *= 0.0174533 # Convert degrees to radians
27 y1 = diagonal_of_half_arm[0] * (y1 * 0.00981) / cos(phi[0]) # Convert scale reading to torque
28 w1 = np.isnan(y1)
29 y1[w1] = 0
30
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31 spl1 = UnivariateSpline(x1, y1, s=0.0004, w=~w1)
32 xs1 = np.linspace(0, np.pi/2, n)
33
34 # Truncate interpolation
35 cutoff_index_1 = 0
36 for i in range(floor(3*n/4), n):
37 if spl1(xs1[i]) >= 0:
38 cutoff_index_1 += 1
39 cutoff_index_1 -= 1
40 period.append(xs1[:-cutoff_index_1][-1])
41
42 # Trial 2
43
44 trial_2_data = np.array([[0.0, 0.0], [0.25, 0.14], [0.25, 0.51], [0.5, 0.98], [0.75, 1.55], [0.75, 2.34],

[1.0, 3.05], [1.0, 3.67], [1.0, 4.86], [1.25, 5.41], [1.5, 7.09], [1.5, 7.95], [1.75, 8.67], [1.75,
9.41], [2.0, 10.58], [2.0, 11.16], [2.25, 12.15], [2.75, 12.93], [2.75, 13.86], [2.75, 14.45], [2.75,
15.56], [3.0, 15.85], [3.0, 16.62], [3.25, 17.15], [3.5, 17.97], [3.5, 18.08], [4.0, 20.44], [4.25,
23.71], [4.75, 25.82], [5.75, 30.29], [6.25, 32.65], [6.5, 34.75], [7.0, 36.01], [7.75, 38.46], [7.75,
39.89], [8.25, 41.49], [9.0, 43.46], [9.25, 44.93], [9.75, 46.35], [10.0, 47.89], [10.5, 48.93], [10.75,
49.8], [11.25, 50.42], [11.5, 51.36], [12.25, 52.71], [13.0, 53.81], [14.0, 55.15], [14.5, 56.11],
[15.0, 56.18], [15.0, 56.22], [15.25, 56.27], [15.25, 56.06], [15.75, 56.43], [15.75, 56.38], [16.0,
56.59], [16.25, 56.85], [16.75, 57.09], [17.5, 57.44], [17.75, 57.58], [18.25, 57.81], [18.5, 58.04],
[19.5, 57.95], [20.0, 58.21], [20.5, 58.04], [21.0, 58.31], [21.25, 58.12], [21.75, 58.23], [22.0,
58.06], [22.25, 57.86], [22.75, 57.95], [23.0, 57.96], [23.25, 57.92], [24.0, 57.88], [24.25, 57.89],
[24.5, 57.73], [25.0, 57.54], [25.25, 57.38], [25.5, 57.2], [25.75, 57.12], [26.25, 56.8], [26.25,
56.48], [26.5, 56.02], [27.0, 55.84], [27.0, 55.86], [27.25, 55.63], [27.75, 55.55], [28.25, 55.52],
[29.25, 54.18], [29.75, 52.5], [30.5, 52.2], [30.75, 50.56], [31.75, 49.62], [32.25, 47.35], [32.75,
45.73], [33.25, 43.69], [33.75, 41.18], [34.25, 38.19], [35.5, 34.69], [35.75, 32.92], [36.25, 30.91],
[37.0, 28.53], [37.25, 26.31], [38.0, 24.38], [38.25, 22.78], [38.5, 21.3], [39.0, 19.54], [39.25,
17.41], [39.75, 15.42], [40.25, 12.71], [40.75, 11.29], [41.25, 8.69], [41.5, 6.0], [42.25, 2.45],
[42.25, 1.77], [42.75, 0.71], [43.0, 0.23], [43.25, -0.87], [43.5, -1.93], [44.25, -3.53], [44.25,
-5.37], [44.5, -8.02], [44.5, -9.21], [45.0, -10.14], [45.25, -11.38], [46.0, -12.97], [46.25, -13.9],
[46.75, -17.56], [47.25, -18.43], [47.75, -21.29], [48.75, -24.07], [49.0, -26.65], [49.5, -29.77],
[50.25, -31.59], [50.75, -33.69], [51.25, -36.91], [52.0, -38.24], [53.0, -38.88], [53.75, -41.08],
[54.25, -43.21], [54.75, -44.94], [55.5, -46.96], [56.25, -48.14], [56.5, -49.33], [56.75, -50.56],
[56.75, -51.33], [57.5, -52.16], [58.25, -52.24], [59.5, -53.01], [60.75, -53.99], [61.0, -54.7],
[61.75, -55.03], [62.25, -54.99], [63.0, -55.26], [63.25, -55.36], [63.75, -55.25], [65.5, -55.41],
[67.25, -55.2], [68.75, -55.31], [69.0, -55.0], [70.25, -54.5], [71.25, -54.22], [72.0, -53.64], [72.5,
-53.05], [73.75, -52.32], [74.25, -51.8], [76.5, -50.66], [77.25, -50.27], [78.0, -46.35], [78.25,
-44.64], [78.75, -43.42], [79.25, -41.85], [79.75, -40.37], [80.5, -38.51], [81.0, -37.09], [81.25,
-33.57], [81.5, -31.21]])

45 x2 = trial_2_data[:,0] # Difference in angular displacements (degrees)
46 y2 = trial_2_data[:,1] # Scale reading (grams)
47
48 x2 *= 0.0174533 # Convert degrees to radians
49 y2 = diagonal_of_half_arm[0] * (y2 * 0.00981) / cos(phi[0]) # Convert scale reading to torque
50 w2 = np.isnan(y2)
51 y2[w2] = 0
52
53 spl2 = UnivariateSpline(x2, y2, s=0.002, w=~w2)
54 xs2 = np.linspace(0, np.pi/2, n)
55
56 # Truncate interpolation
57 cutoff_index_2 = 0
58 for i in range(floor(3*n/4), n):
59 if spl2(xs2[i]) > 0:
60 cutoff_index_2 += 1
61 cutoff_index_2 -= 1
62 period.append(xs2[:-cutoff_index_2][-1])
63
64 # Trial 3
65
66 trial_3_data = np.array([[0.0, 0.0], [0.25, 0.17], [0.25, 0.49], [0.5, 0.88], [0.75, 1.51], [0.75, 2.26],

[1.0, 3.16], [1.0, 3.7], [1.0, 4.98], [1.25, 5.59], [1.5, 7.2], [1.75, 8.02], [2.0, 8.82], [2.0, 9.56],
[2.0, 10.73], [2.25, 11.21], [2.5, 12.18], [2.75, 13.04], [2.75, 13.98], [3.0, 14.54], [3.0, 15.68],
[3.25, 16.02], [3.25, 16.8], [3.5, 17.19], [3.5, 18.16], [3.5, 18.15], [4.0, 20.53], [4.25, 23.82],
[5.0, 25.98], [6.0, 30.47], [6.25, 32.8], [6.5, 34.77], [7.0, 36.01], [7.75, 38.64], [8.0, 39.98], [8.5,
41.52], [9.0, 43.5], [9.5, 45.1], [10.0, 46.42], [10.0, 47.92], [10.5, 49.05], [11.0, 49.9], [11.5,
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50.56], [11.5, 51.5], [12.5, 52.83], [13.25, 53.86], [14.0, 55.16], [14.75, 56.16], [15.0, 56.3], [15.0,
56.32], [15.5, 56.36], [15.5, 56.19], [16.0, 56.52], [15.75, 56.52], [16.0, 56.68], [16.5, 56.87],
[17.0, 57.28], [17.5, 57.63], [17.75, 57.73], [18.5, 58.0], [18.5, 58.05], [19.5, 58.1], [20.25, 58.21],
[20.5, 58.06], [21.0, 58.35], [21.25, 58.29], [22.0, 58.24], [22.25, 58.13], [22.5, 58.04], [22.75,
58.0], [23.0, 57.98], [23.25, 57.95], [24.0, 58.06], [24.5, 58.09], [24.5, 57.86], [25.0, 57.59],
[25.25, 57.41], [25.5, 57.2], [25.75, 57.25], [26.25, 56.8], [26.5, 56.62], [26.5, 56.18], [27.0,
55.98], [27.0, 55.94], [27.5, 55.76], [27.75, 55.57], [28.5, 55.58], [29.5, 54.36], [29.75, 52.69],
[30.5, 52.3], [31.0, 50.64], [32.0, 49.73], [32.25, 47.44], [33.0, 45.8], [33.25, 43.83], [33.75,
41.26], [34.25, 38.25], [35.75, 34.72], [35.75, 33.08], [36.5, 31.09], [37.0, 28.62], [37.5, 26.39],
[38.0, 24.48], [38.25, 22.82], [38.5, 21.43], [39.0, 19.63], [39.5, 17.54], [40.0, 15.52], [40.5,
12.74], [41.0, 11.32], [41.25, 8.87], [41.5, 6.17], [42.5, 2.62], [42.5, 1.79], [43.0, 0.83], [43.25,
-0.94], [43.25, -2.05], [43.5, -3.54], [44.5, -5.48], [44.25, -7.99], [44.5, -9.05], [44.75, -10.24],
[45.0, -11.44], [45.25, -12.92], [46.0, -13.8], [46.25, -17.5], [47.0, -18.45], [47.5, -21.16], [47.75,
-24.05], [48.75, -26.55], [49.25, -29.79], [49.5, -31.7], [50.5, -33.73], [51.0, -36.92], [51.25,
-38.26], [52.0, -38.88], [53.25, -41.05], [54.0, -43.2], [54.5, -44.94], [55.0, -46.93], [55.5, -48.17],
[56.25, -49.52], [56.5, -50.66], [56.75, -51.51], [56.75, -52.27], [57.5, -52.37], [58.25, -53.05],
[59.5, -54.1], [60.75, -54.6], [61.0, -54.96], [61.75, -55.09], [62.5, -55.28], [63.0, -55.31], [63.5,
-55.22], [63.75, -55.43], [65.75, -55.14], [67.25, -55.36], [68.75, -55.02], [69.0, -54.46], [70.25,
-54.17], [71.25, -53.73], [72.25, -53.12], [72.5, -52.36], [73.75, -51.78], [74.25, -50.66], [76.5,
-50.21], [77.5, -46.23], [78.25, -44.71], [78.5, -43.36], [78.75, -41.79], [79.5, -40.4], [79.75,
-38.51], [80.5, -37.15], [81.5, -33.42], [82.0, -31.32], [82.5, -27.01]])

67 x3 = trial_3_data[:,0] # Difference in angular displacements (degrees)
68 y3 = trial_3_data[:,1] # Scale reading (grams)
69
70 x3 *= 0.0174533 # Convert degrees to radians
71 y3 = diagonal_of_half_arm[0] * (y3 * 0.00981) / cos(phi[0]) # Convert scale reading to torque
72 w3 = np.isnan(y3)
73 y3[w3] = 0
74
75 spl3 = UnivariateSpline(x3, y3, s=0.0015, w=~w3)
76 xs3 = np.linspace(0, np.pi/2, n)
77
78 # Truncate interpolation
79 cutoff_index_3 = 0
80 for i in range(floor(3*n/4), n):
81 if spl3(xs3[i]) > 0:
82 cutoff_index_3 += 1
83 cutoff_index_3 -= 1
84 period.append(xs3[:-cutoff_index_3][-1])
85
86
87 average_period = sum(period)/float(len(period))
88 period_unc = round((max(period) - min(period)) / 2, 2)
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E Sine Wave-Fitting Program
This program attempts to fit a sine wave to the processed data from Trial 1 of the torque
curve generation and outputs the result on a plot. It is based on the algorithm suggested by
StackOverflow user Dhara (2013).

1 import numpy as np
2 from scipy.optimize import leastsq
3 import matplotlib
4 matplotlib.use(’TkAgg’)
5 import pylab as plt
6 from math import sqrt, atan, cos
7 from process_data import *
8
9 guess_mean = np.mean(y1)/2

10 guess_std = 3*np.std(y1)/(2**0.5)
11 guess_phase = 0
12 guess_stretch = 0.3
13
14
15 data_first_guess = guess_std*np.sin(np.sin(guess_stretch**-1 * (x1))) + guess_mean
16
17 optimize_func = lambda x: x[0]*np.sin(np.sin(x[1]**-1 *(x1))) - y1
18 est_std, est_stretch, est_mean = leastsq(optimize_func, [guess_std, guess_stretch, guess_mean])[0]
19
20 fig = plt.figure(1, figsize=(9, 5), dpi=150)
21 fig.suptitle(’\\textbf{Torque Felt by Driven Gear vs. Difference in Displacements}’, fontweight=’bold’)
22 fig.subplots_adjust(left=0.11, top=0.9, right=0.98, bottom=0.1)
23
24 plt.plot(x1, y1, ’.’, label=’Processed Data Points’, c=’black’)
25 plt.plot(x1, est_std*np.sin(est_stretch**-1 *(x1)+est_mean), ’--’, label=’Fitted Sine Wave’, c=’black’)
26
27 plt.ylabel(’\\textbf{Torque Felt by\\\\Driven Gear (Nm)}’)
28 plt.xlabel(’\\textbf{Difference in Displacements (rad)}’)
29 plt.xlim(0, np.pi/2)
30
31 plt.legend(numpoints=1)
32 plt.show()
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F Spline Interpolation Program
This is the program fits spline interpolations to each trial of the torque curve generation and
outputs the result on a plot.

1 from scipy.interpolate import UnivariateSpline # v0.19.1 must be used
2 import numpy as np
3 from math import cos, sqrt, atan, floor
4 import matplotlib
5 matplotlib.use(’TkAgg’)
6 import pylab as plt
7 import sys
8 from process_data import *
9

10 print(’The periods of each spline interpolation are {}, respectively.’.format(period))
11
12 fig = plt.figure(1, figsize=(9, 7), dpi=150)
13 fig.subplots_adjust(hspace=0.76,left=0.11, top=0.94, right=0.74, bottom=0.1)
14 anchor = (1.4, 1.02)
15
16 ax1 = plt.subplot(311)
17 ax1.plot(x1, y1, ’.’, c=’black’, label=’Processed\nData Points’)
18 ax1.plot(xs1[:-cutoff_index_1], spl1(xs1[:-cutoff_index_1]), ’--’, c=’black’, lw=1,

label=’Spline\nInterpolation’)
19 plt.ylabel(’\\textbf{Torque Felt by\\\\Driven Gear (Nm)}’)
20 plt.xlabel(’\\textbf{Difference in Displacements (rad)}’)
21 plt.legend(numpoints=1,bbox_to_anchor=anchor)
22 ax1.set_title(’\\textbf{Spline Interpolation for Trial 1}’)
23
24 ax2 = plt.subplot(312)
25 ax2.plot(x2, y2, ’*’, c=’black’, label=’Processed\nData Points’)
26 ax2.plot(xs2[:-cutoff_index_2], spl2(xs2[:-cutoff_index_2]), ’--’, c=’black’, lw=1,

label=’Spline\nInterpolation’)
27 plt.ylabel(’\\textbf{Torque Felt by\\\\Driven Gear (Nm)}’)
28 plt.xlabel(’\\textbf{Difference in Displacements (rad)}’)
29 plt.legend(numpoints=1,bbox_to_anchor=anchor)
30 ax2.set_title(’\\textbf{Spline Interpolation for Trial 2}’)
31
32 ax3 = plt.subplot(313)
33 plt.plot(x3, y3, ’x’, c=’black’, label=’Processed\nData Points’)
34 plt.plot(xs3[:-cutoff_index_3], spl3(xs3[:-cutoff_index_3]), ’--’, c=’black’, lw=1,

label=’Spline\nInterpolation’)
35 plt.ylabel(’\\textbf{Torque Felt by\\\\Driven Gear (Nm)}’)
36 plt.xlabel(’\\textbf{Difference in Displacements (rad)}’)
37 plt.legend(numpoints=1,bbox_to_anchor=anchor)
38 ax3.set_title(’\\textbf{Spline Interpolation for Trial 3}’)
39
40 plt.savefig(’processed_w_fit.png’)
41 plt.show()
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G Runge-Kutta Program
This is the main Runge-Kutta program that predicts the behaviour of the driven gear as
outlined in Section 3.

1 # Runge-Kutta Method
2 # Script written by Adam Vandenbussche on October 8, 2017
3 # Based on the method outlined in Elementary Differential Equations with Applications 2nd ed. (Derrick &

Grossman, 1981)
4 #
5 # Run like this:
6 # python runge-kutta.py a+-a_unc t h I_0+-I_0_unc I_1+-I_1_unc I_2+-I_2_unc --ignore-tolerance
7 # where: a+-a_unc -> Driver acceleration and absolute uncertainty
8 # t -> Total time interval to compute
9 # h -> Runge-Kutta increment

10 # I_0+-I_0_unc -> Coefficient of velcoity^0 of driven gear (moment of inertia) and absolute uncertainty
11 # I_1+-I_1_unc -> Coefficient of velcoity^1 of driven gear (moment of inertia) and absolute uncertainty
12 # I_2+-I_2_unc -> Coefficient of velcoity^2 of driven gear (moment of inertia) and absolute uncertainty
13 # --ignore-tolerance -> Ignore maximum displacement per interval warning
14 #
15
16
17 # Import dependencies
18 from math import pi, ceil, log
19 import numpy as np
20 import matplotlib
21 matplotlib.use(’TkAgg’)
22 import pylab as plt
23 import sys
24 from process_data import *
25
26 def main(args):
27
28 #
29 # PROCESS PROGRAM PARAMETERS
30 #
31
32 h = float(args[3]) # Step size
33 total_time = float(args[2]) # Seconds
34 current_time = 0
35
36 # Driver acceleration
37 driver_a, driver_a_unc = args[1].split(’+-’)
38 driver_a = float(driver_a)
39 driver_a_unc = float(driver_a_unc)
40
41 total_provided_unc = driver_a_unc / driver_a
42
43 driver_v = 0
44
45 # Moment of inertia quadratic coefficients
46 moi_0, moi_0_unc = args[4].split(’+-’)
47 moi_0 = float(moi_0)
48 moi_0_unc = float(moi_0_unc)
49
50 if moi_0 != 0:
51 total_provided_unc += moi_0_unc / moi_0
52
53 moi_1, moi_1_unc = args[5].split(’+-’)
54 moi_1 = float(moi_1)
55 moi_1_unc = float(moi_1_unc)
56
57 if moi_1 != 0:
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58 total_provided_unc += moi_1_unc / moi_1
59
60 moi_2, moi_2_unc = args[6].split(’+-’)
61 moi_2 = float(moi_2)
62 moi_2_unc = float(moi_2_unc)
63
64 if moi_2 != 0:
65 total_provided_unc += moi_2_unc / moi_2
66
67
68 #
69 # MAIN RUNGE-KUTTA ALGORITHM
70 #
71
72 iterations = ceil(total_time/h)
73 successful_iterations = 0
74 already_alerted = False
75
76 time_xs = np.empty([1, iterations])
77 displacement_ys = np.empty([1, iterations])
78 velocity_ys = np.empty([1, iterations]) ######
79 acceleration_ys = np.empty([1, iterations])
80 acceleration_ys_unc = np.empty([1, iterations])
81 velocity_ys_unc = np.empty([1, iterations])
82 displacement_ys_unc = np.empty([1, iterations])
83
84 def driven_acceleration(time, driven_displacement, driven_velocity):
85 delta_theta = 0.5 * driver_a * time ** 2 - driven_displacement
86 values = [ spl1( delta_theta % period[0]), spl2( delta_theta % period[1]), spl3( delta_theta %

period[2]) ]
87
88 average = sum(values) / 3
89 range_unc = (max(values) - min(values)) / 2
90
91 moi = moi_0 + moi_1 * driven_velocity + moi_2 * driven_velocity ** 2
92
93 return (average / moi, range_unc / moi, [values[0]/moi, values[1]/moi, values[2]/moi])
94
95 # Initial conditions
96 d_current = 0
97 v_current = 0
98
99 for i in range(iterations):

100 #print(’Performing calculation {0:,d} of {1:,d}!’.format(i, iterations))
101 driver_v += driver_a * h
102 driver_d = 0.5 * driver_a * h ** 2
103 if (driver_v * h + driver_d > pi/24):
104 if not already_alerted:
105 print(’Surpassed maximum displacement per iteration threshold after {0} seconds! Stopping

simulation.’.format(current_time))
106 already_alerted = True
107 if ’--ignore-tolerance’ not in args:
108 break
109
110 time_xs[0][i] = current_time
111 displacement_ys[0][i] = d_current
112 velocity_ys[0][i] = v_current
113
114 dd1 = h * v_current
115 dv1, dv1_a_unc, dv1_a_individual = driven_acceleration(current_time, d_current, v_current)
116 dv1 *= h
117
118 dd2 = h * (v_current + dv1 / 2)
119 dv2, dv2_a_unc, dv2_a_individual = driven_acceleration(current_time + h / 2, d_current + dd1 / 2,

v_current + dv1 / 2)
120 dv2 *= h
121
122 dd3 = h * (v_current + dv2 / 2)
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123 dv3, dv3_a_unc, dv3_a_individual = driven_acceleration(current_time + h / 2, d_current + dd2 / 2,
v_current + dv2 / 2)

124 dv3 *= h
125
126 dd4 = h * (v_current + dv3)
127 dv4, dv4_a_unc, dv4_a_individual = driven_acceleration(current_time + h, d_current + dd3, v_current +

dv3)
128 dv4 *= h
129
130 dd = (dd1 + 2 * dd2 + 2 * dd3 + dd4) / 6
131 dv = (dv1 + 2 * dv2 + 2 * dv3 + dv4) / 6
132 d_current += dd
133 v_current += dv
134
135 acceleration_ys[0][i], acceleration_ys_unc[0][i] = driven_acceleration(current_time + h, d_current,

v_current)[:2]
136
137 velocity_ys_unc[0][i] = h * acceleration_ys_unc[0][i]
138 displacement_ys_unc[0][i] = h * velocity_ys_unc[0][i] + 0.5 * acceleration_ys_unc[0][i] * (h ** 2)
139
140 current_time += h
141 successful_iterations += 1
142
143
144 difference_ys = np.empty([1, successful_iterations])
145 difference_ys_unc = np.empty([1, successful_iterations])
146
147 # Analyze slipping
148 done_analyzing_slipping = False
149 slipping_time = 0
150 earliest_possible_slipping_time = 0
151 latest_possible_slipping_time = 0
152 for i in range(successful_iterations):
153 difference_ys[0][i] = 0.5 * driver_a * (h * i) ** 2 - displacement_ys[0][i]
154 difference_ys_unc[0][i] = driver_a_unc / driver_a + displacement_ys_unc[0][i]
155 if not done_analyzing_slipping and earliest_possible_slipping_time == 0 and difference_ys[0][i] * (1 +

total_provided_unc) + difference_ys_unc[0][i] > average_period - period_unc:
156 earliest_possible_slipping_time = h * i
157 if not done_analyzing_slipping and slipping_time == 0 and difference_ys[0][i] > average_period:
158 slipping_time = h * i
159 if not done_analyzing_slipping and difference_ys[0][i] * (1 - total_provided_unc) -

difference_ys_unc[0][i] > average_period + period_unc:
160 done_analyzing_slipping = True
161 latest_possible_slipping_time = h * i
162 if done_analyzing_slipping:
163 print(’Slipping occurs after {0} s, although could occur between {1} and {2} s

({0}+{3}-{4}).’.format(slipping_time, earliest_possible_slipping_time,
latest_possible_slipping_time, slipping_time-earliest_possible_slipping_time,
latest_possible_slipping_time-slipping_time))

164 else:
165 print(’No slipping occurs!’)
166
167 # Determine peak driven gear acceleration
168 max_driven_a = np.amax(acceleration_ys)
169 max_driven_a_unc = max_driven_a * total_provided_unc + acceleration_ys_unc[0][np.argmax(acceleration_ys)]
170 print(’Peak Driven Acceleration: {} Âś {}’.format( max_driven_a, max_driven_a_unc))
171
172
173
174 #
175 # GENERATE PLOTS
176 #
177
178 # Set up window
179 fig = plt.figure(1, figsize=(9, 6), dpi=150)
180 fig.subplots_adjust(hspace=0.48, wspace=0.24, left=0.1, top=0.94, right=0.98, bottom=0.18)
181 size = 0.2 ** 2 # Size of points in pt^2
182 x_time = np.linspace(0, h * successful_iterations, successful_iterations)
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183 opacity = 0.2
184
185 # Acceleration-Time
186 ax1 = plt.subplot(221)
187 # Driver uncertainty
188 unc = ax1.fill_between(time_xs[0][:successful_iterations - 2], np.linspace(driver_a, driver_a,

successful_iterations - 2) + np.linspace(driver_a_unc, driver_a_unc, successful_iterations - 2),
np.linspace(driver_a, driver_a, successful_iterations - 2) - np.linspace(driver_a_unc, driver_a_unc,
successful_iterations - 2), facecolor=’black’, edgecolor=’none’, alpha=opacity, interpolate=True)

189 # Driven uncertainty
190 ax1.fill_between(time_xs[0][:successful_iterations - 2], acceleration_ys[0][:successful_iterations - 2] *

(1 + total_provided_unc) + acceleration_ys_unc[0][:successful_iterations - 2],
acceleration_ys[0][:successful_iterations - 2] * (1 - total_provided_unc) -
acceleration_ys_unc[0][:successful_iterations - 2], facecolor=’black’, edgecolor=’none’,
alpha=opacity, interpolate=True)

191 # Driver
192 ax1.plot(x_time, np.linspace(driver_a, driver_a, successful_iterations), ’--’, c=’black’, label=’Driver

Acceleration’)
193 # Driven
194 ax1.scatter(time_xs[:,:successful_iterations - 2], acceleration_ys[:,:successful_iterations - 2], s=0.01,

marker=’.’, color=’black’, label=’Driven Acceleration’, alpha=0.5+log(h, 10)*0.04)
195
196 plt.ylabel(’\\textbf{Acceleration (rad s\\textsuperscript{-2})}’)
197 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
198 plt.xlim(0, (successful_iterations - 2) * h)
199 ax1.set_title(’\\textbf{Acceleration vs. Time}’)
200
201
202 # Velocity-Time
203 ax2 = plt.subplot(222)
204 # Driver uncertainty
205 ax2.fill_between(x_time, (np.linspace(driver_a, driver_a, successful_iterations) * x_time) * (1 +

np.linspace(driver_a_unc/driver_a, driver_a_unc/driver_a, successful_iterations)),
(np.linspace(driver_a, driver_a, successful_iterations) * x_time) * (1 -
np.linspace(driver_a_unc/driver_a, driver_a_unc/driver_a, successful_iterations)), facecolor=’black’,
edgecolor=’none’, alpha=opacity, interpolate=True)

206 # Driven uncertainty
207 ax2.fill_between(time_xs[0][:successful_iterations], velocity_ys[0][:successful_iterations] * (1 +

total_provided_unc) + velocity_ys_unc[0][:successful_iterations],
velocity_ys[0][:successful_iterations] * (1 - total_provided_unc) -
velocity_ys_unc[0][:successful_iterations], facecolor=’black’, edgecolor=’none’, alpha=opacity,
interpolate=True)

208
209 driver = ax2.plot(x_time, driver_a*x_time, ’--’, c=’black’, label=’Driver Velocity’)
210 driven = ax2.scatter(time_xs[:,:successful_iterations], velocity_ys[:,:successful_iterations], s=0.005,

marker=’.’, color=’black’, label=’Driven Velocity’)
211
212 plt.ylabel(’\\textbf{Velocity (rad s\\textsuperscript{-1})}’)
213 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
214 plt.xlim(0, successful_iterations * h)
215 ax2.set_title(’\\textbf{Velocity vs. Time}’)
216
217
218 # Difference in Displacements-Time
219 ax3 = plt.subplot(223)
220
221 ax3.fill_between(time_xs[0][:successful_iterations], difference_ys[0][:successful_iterations] * (1 +

total_provided_unc) + difference_ys_unc[0][:successful_iterations],
difference_ys[0][:successful_iterations] * (1 - total_provided_unc) -
difference_ys_unc[0][:successful_iterations], facecolor=’black’, edgecolor=’none’, alpha=opacity,
interpolate=True)

222
223 ax3.scatter(time_xs[:,:successful_iterations], difference_ys[0], s=0.01, marker=’.’, color=’black’,

label=’Difference in Displacements’)
224 plt.ylabel(’\\textbf{Difference in \\\\ Displacements (rad)}’)
225 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
226 plt.xlim(0, successful_iterations * h)
227 ax3.set_title(’\\textbf{Difference in Displacements vs. Time}’)
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228
229
230 # Displacement-Time
231 ax4 = plt.subplot(224)
232 # Driver uncertainty
233 ax4.fill_between(x_time, (0.5 * np.linspace(driver_a, driver_a, successful_iterations) * x_time ** 2) *

(1 + np.linspace(2*driver_a_unc/driver_a, 2*driver_a_unc/driver_a, successful_iterations)), (0.5 *
np.linspace(driver_a, driver_a, successful_iterations) * x_time ** 2) * (1 -
np.linspace(2*driver_a_unc/driver_a, 2*driver_a_unc/driver_a, successful_iterations)),
facecolor=’black’, edgecolor=’none’, alpha=opacity, interpolate=True)

234 # Driven uncertainty
235 ax4.fill_between(time_xs[0][:successful_iterations], displacement_ys[0][:successful_iterations] * (1 +

total_provided_unc) + displacement_ys_unc[0][:successful_iterations],
displacement_ys[0][:successful_iterations] * (1 - total_provided_unc) -
displacement_ys_unc[0][:successful_iterations], facecolor=’black’, edgecolor=’none’, alpha=opacity,
interpolate=True)

236
237 ax4.plot(x_time, 0.5*driver_a*x_time**2, ’--’, c=’black’, label=’Driver Displacement’)
238 ax4.scatter(time_xs[:,:successful_iterations], displacement_ys[:,:successful_iterations], s=size,

marker=’.’, c=’black’, label=’Driven Displacement’)
239 plt.ylabel(’\\textbf{Displacement (rad)}’)
240 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
241 plt.xlim(0, successful_iterations * h)
242 ax4.set_title(’\\textbf{Displacement vs. Time}’)
243
244
245 # Custom legend
246 labels = [’Driver Gear’, ’Driven Gear’]
247 markers = [’_’, ’.’]
248 colors = [’black’, ’black’]
249 patches = [ plt.plot([],[], marker=markers[i], ms=10, ls=’’, mec=None, color=colors[i],

label=’{:s}’.format(labels[i]) )[0] for i in range(len(labels)) ]
250 labels.append(’Uncertainty’)
251 patches.append(unc)
252
253 fig.legend(patches, labels, numpoints=1, loc=’lower center’, ncol=3)
254
255 # Generate separate velocity-time and displacemen-time graphs for driver and driven to emphasize that

they are the same
256
257 # Velocity-Time
258 fig2 = plt.figure(2, figsize=(9, 2.5), dpi=150)
259 fig2.subplots_adjust(hspace=0.48, wspace=0.24, left=0.1, top=0.9, right=0.98, bottom=0.17)
260 axA = plt.subplot(121)
261 # Driver uncertainty
262 axA.fill_between(x_time, (np.linspace(driver_a, driver_a, successful_iterations) * x_time) * (1 +

np.linspace(driver_a_unc/driver_a, driver_a_unc/driver_a, successful_iterations)),
(np.linspace(driver_a, driver_a, successful_iterations) * x_time) * (1 -
np.linspace(driver_a_unc/driver_a, driver_a_unc/driver_a, successful_iterations)), facecolor=’black’,
edgecolor=’none’, alpha=opacity, interpolate=True)

263
264 driver = axA.plot(x_time, driver_a*x_time, ’--’, c=’black’, label=’Driver Velocity’)
265
266 plt.ylabel(’\\textbf{Velocity (rad s\\textsuperscript{-1})}’)
267 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
268 plt.xlim(0, successful_iterations * h)
269 axA.set_title(’\\textbf{Driver Gear Velocity vs. Time}’)
270
271 axB = plt.subplot(122)
272
273 # Driven uncertainty
274 axB.fill_between(time_xs[0][:successful_iterations], velocity_ys[0][:successful_iterations] * (1 +

total_provided_unc) + velocity_ys_unc[0][:successful_iterations],
velocity_ys[0][:successful_iterations] * (1 - total_provided_unc) -
velocity_ys_unc[0][:successful_iterations], facecolor=’black’, edgecolor=’none’, alpha=opacity,
interpolate=True)

275
276 driven = axB.scatter(time_xs[:,:successful_iterations], velocity_ys[:,:successful_iterations], s=0.005,
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marker=’.’, color=’black’, label=’Driven Velocity’)
277
278 plt.ylabel(’\\textbf{Velocity (rad s\\textsuperscript{-1})}’)
279 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
280 plt.xlim(0, successful_iterations * h)
281 axB.set_title(’\\textbf{Driven Gear Velocity vs. Time}’)
282
283
284
285
286 fig3 = plt.figure(3, figsize=(9, 2.5), dpi=150)
287 fig3.subplots_adjust(hspace=0.48, wspace=0.24, left=0.1, top=0.9, right=0.98, bottom=0.17)
288
289 # Displacement-Time
290 axC = plt.subplot(121)
291 # Driver uncertainty
292 axC.fill_between(x_time, (0.5 * np.linspace(driver_a, driver_a, successful_iterations) * x_time ** 2) *

(1 + np.linspace(2*driver_a_unc/driver_a, 2*driver_a_unc/driver_a, successful_iterations)), (0.5 *
np.linspace(driver_a, driver_a, successful_iterations) * x_time ** 2) * (1 -
np.linspace(2*driver_a_unc/driver_a, 2*driver_a_unc/driver_a, successful_iterations)),
facecolor=’black’, edgecolor=’none’, alpha=opacity, interpolate=True)

293
294 axC.plot(x_time, 0.5*driver_a*x_time**2, ’--’, c=’black’, label=’Driver Displacement’)
295 plt.ylabel(’\\textbf{Displacement (rad)}’)
296 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
297 plt.xlim(0, successful_iterations * h)
298 axC.set_title(’\\textbf{Driver Gear Displacement vs. Time}’)
299
300 # Displacement-Time
301 axD = plt.subplot(122)
302 # Driven uncertainty
303 axD.fill_between(time_xs[0][:successful_iterations], displacement_ys[0][:successful_iterations] * (1 +

total_provided_unc) + displacement_ys_unc[0][:successful_iterations],
displacement_ys[0][:successful_iterations] * (1 - total_provided_unc) -
displacement_ys_unc[0][:successful_iterations], facecolor=’black’, edgecolor=’none’, alpha=opacity,
interpolate=True)

304
305 axD.scatter(time_xs[:,:successful_iterations], displacement_ys[:,:successful_iterations], s=size,

marker=’.’, c=’black’, label=’Driven Displacement’)
306 plt.ylabel(’\\textbf{Displacement (rad)}’)
307 plt.xlabel(’\\textbf{Time Elapsed (s)}’)
308 plt.xlim(0, successful_iterations * h)
309 axD.set_title(’\\textbf{Driven Gear Displacement vs. Time}’)
310
311 plt.show()
312
313 if __name__==’__main__’:
314 sys.exit(main(sys.argv))

G.1 Validation of Program

One way we can convince ourselves of the accuracy of this program is by looking at the peak
driven acceleration suggested by the program: this value should not exceed the quotient of
the maximum torque applied by the driver gear on the driven gear (the maximum of the
T(�⇥) function) and the moment of inertia.

The average maximum value for T(�⇥) across all trials (determined programmatically)
and its uncertainty (calculated using a range uncertainty) is provided in Table 7 using the
simulation from Figure 11 of Section 4.
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Table 7: Peak Driven Accelerations

Trial �⇥ Peak T(�⇥)
# (rad ± rad) (Nm ± Nm)

1 0.349 ± 0.008 0.235 ± 0.009
2 0.367 ± 0.008 0.236 ± 0.009
3 0.367 ± 0.008 0.236 ± 0.009

Average 0.361± 0.009 0.236± 0.001

The maximum possible driven gear acceleration is calculated using Newton’s second law:

↵opeak =
T(�⇥)peak

Io
⇡ 0.236Nm

0.00257 kgm2 ⇡ 91.8 rad s�2

U↵opeak
= ↵opeak

 U
T(�⇥)peak

T(�⇥)peak
+

UIo

Io

!

= 91.8 rad s�2

✓
0.001Nm

0.236Nm
+

0.00006 kgm2

0.00257 kgm2

◆

⇡ 3 rad s�2

(28)

The simulated peak driven gear acceleration, rounded to one significant figure, was 92 rad s�2

± 3 rad s�2 (determined by the Runge-Kutta program). This value matches the expected
maximum value calculated in Eq. (28). The fact that these values match suggests the
program is at least partly accurate.
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H Other Types of
Accelerating Systems

H.1 System with a Quadratic Moment of Inertia

When factors such as friction and air resistance cannot be ignored, the moment of inertia of
an accelerating object is not constant21: the faster an object spins, the more air resistance
is generated, the more force required to continue to accelerate the object, the “heavier” the
object feels (recalling that moment of inertia can be thought of as “angular mass”).

Fundamentally, the resistive torques that are generated when objects begin rotating, espe-
cially at higher speeds, can have one of three behaviours (MathWorks, “MATLAB”): they
can be constant, or they can be proportional to either angular velocity or angular velocity
squared. This being said, should one decide they want to take various resistive torques into
account as the gear train accelerates, they can model these torques as moments of inertia
that increase proportional to angular velocity, angular velocity squared, etc.

In other words, Eq. (5) can be rewritten as follows:

�✓o =
T
⇣

↵i�t2

2 ��✓o
⌘

Io
=

T
⇣

↵i�t2

2 ��✓o
⌘

◆0 + ◆1�✓o + ◆2�✓2o
(29)

where ◆n is the coefficient for the term �✓no
22.

Furthermore, the uncertainty associated with the driven acceleration as shown in Eq. (30)
is now calculated as follows:

U
�✓o

= U
T(�⇥)

+�✓o

✓
U↵i

↵i
+

UIo

Io

◆
= U

T(�⇥)
+�✓o

✓
U↵i

↵i
+

U◆0

◆0
+

U◆1

◆1
+

U◆2

◆2

◆
(30)

The same approach that discussed in Section 4 can be used to determine when slipping occurs
in a magnetic gear train in the real world, that is, where air friction and rolling resistance are
significant. Consider a magnetic gear train with the T(�⇥) function determined in Section
2.1 and a moment of inertia represented by the quadratic function

(2.57± 0.06) · 10�3 + (2.00± 0.02) · 10�5�✓o + (5.00± 0.05) · 10�5�✓2o

where (2.00± 0.02) · 10�5 and (5.00± 0.05) · 10�5 are arbitrary constants.

21
This is one way of representing these resistive torques.

22
The lowercase Greek letter iota (◆) was chosen to represent the coefficients of the various powers of �✓o

because the uppercase letter I is conventionally used to represent a moment of inertia.
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We will begin by looking at the behaviour of the system for the first two seconds of ac-
celeration when the driver acceleration ↵i to 2.00 rad s�2 ± 0.01 rad s�2. The results of the
simulation are shown in Figure 1523.

Figure 15: Runge-Kutta Program Output Given ↵i = 2.00 rad s�2 ± 0.01 rad s�2 and
h = 0.0001 s for First 2 s of Acceleration

At first glance, it appears as though the rate of acceleration of this system is sustainable.
However, because the moment of inertia of the gear now increases as the driven gear accel-
erates, there must be a certain amount of time after which the system begins to slip. To
demonstrate this, we can predict the behaviour of the same system after 40 s has elapsed.
The results are shown in Figure 1624.

23
The command used to generate these plots is python runge-kutta.py 2.00+-0.01 2 0.0001

0.00257+-0.00006 0.0000200+-0.0000002 0.0000500+-0.0000005.
24

The command used to generate these plots is python runge-kutta.py 2.00+-0.01 40 0.001
0.00257+-0.00006 0.0000200+-0.0000002 0.0000500+-0.0000005.
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Figure 16: Runge-Kutta Program Output Given ↵i = 2.00 rad s�2 ± 0.01 rad s�2 and
h = 0.001 s for First 40 s of Acceleration

Sure enough, after 26.55 s ± 0.04 s, the system begins to slip indefinitely.

In fact, given enough time to accelerate at a constant rate, every magnetic gear train will
begin to slip when friction cannot be ignored. This is because the moment of inertia will
eventually grow as the driven gear accelerates to a point where the driven gear is just too
“heavy” to continue being accelerated by the driver gear.

The acceleration-time plot in Figure 16 also suggests a certain degree of accuracy in the
simulation: because the acceleration of the driven gear converges to the acceleration of the
driver gear as it oscillates, it is clear that some kind of friction is at play. This is the same
reason that a simple harmonic oscillator (i.e., a mass suspended by a spring) will eventually
come to rest after being stretched out of equilibrium when not in a vacuum; the system is
dampened by air friction (O’Neil, 1983).

H.2 Decelerating System

It is also possible for the driver gear to impose a negative torque on the driven gear should
the displacement of the latter begin to exceed the displacement of the former. There is
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a maximum sustainable deceleration of the driver gear, and it should be equivalent to the
maximum sustainable acceleration for a given gear train.

For example, given the same magnetic gear train as in Section ?? with a constant moment of
inertia of 0.00257 kgm2 ± 0.00006 kgm2, an acceleration of the driver gear of �70.0 rad s�2

± 0.5 rad s�2 is sustainable, whereas an acceleration of �80 rad s�2 ± 0.5 rad s�2 is not. This
is demonstrated in Figures 1725 and 1826, respectively.

Figure 17: Runge-Kutta Program Output Given ↵i = �70.0 rad s�2 ± 0.5 rad s�2 and
h = 0.0001 s for First 2 s of Acceleration

25
The command used to generate these plots is python runge-kutta.py -70.0+-0.5 2 0.0001

0.00257+-0.00006 0+-0 0+-0.
26

The command used to generate these plots is python runge-kutta.py -80.0+-0.5 2 0.0001
0.00257+-0.00006 0+-0 0+-0.
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Figure 18: Runge-Kutta Program Output Given ↵i = �80.0 rad s�2 ± 0.5 rad s�2 and
h = 0.0001 s for First 2 s of Acceleration
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I Full Raw Dataset for
Torque Curve
Generation

Table 8: Full Raw Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

1 0.00 0.00 0.00 0.00
2 0.25 0.00 0.00 0.11
3 0.25 0.00 0.00 0.41
4 0.25 0.00 0.00 0.88
5 0.50 0.00 0.00 1.50
6 0.50 0.00 0.00 2.18
7 0.75 0.00 0.00 2.87
8 0.75 0.00 0.00 3.64
9 1.00 0.00 0.00 4.80
10 1.00 0.00 0.00 5.40
11 1.50 0.00 0.00 6.97
12 1.50 0.00 0.00 7.86
13 1.75 0.00 0.00 8.58
14 1.75 0.00 0.00 9.38
15 2.00 0.00 0.00 10.47
16 2.00 0.00 0.00 11.07
17 2.25 0.00 0.00 12.01
18 2.50 0.00 0.00 12.83
19 2.50 0.00 0.00 13.78
20 2.75 0.00 0.00 14.41
21 2.75 0.00 0.00 15.43
22 3.00 0.00 0.00 15.74
23 3.00 0.00 0.00 16.51
24 3.25 0.00 0.00 16.97
25 3.25 0.00 0.00 17.78
26 3.25 0.00 0.00 17.92
27 3.75 0.00 0.00 20.37
28 4.25 0.00 0.00 23.70
29 4.75 0.00 0.00 25.74
30 5.75 0.00 0.00 30.23
31 6.25 0.00 0.00 32.48
32 6.50 0.00 0.00 34.59
33 7.00 0.00 0.00 35.95
34 7.50 0.00 0.00 38.28
35 7.75 0.00 0.00 39.81
36 8.25 0.00 0.00 41.42
37 8.75 0.00 0.00 43.34
38 9.25 0.00 0.00 44.86
39 9.75 0.00 0.00 46.15
40 10.00 0.00 0.00 47.71
41 10.50 0.00 0.00 48.88
42 10.75 0.00 0.00 49.62
43 11.25 0.00 0.00 50.35
44 11.50 0.00 0.00 51.33
45 12.25 0.00 0.00 52.53
46 13.00 0.00 0.00 53.77
47 14.00 0.00 0.00 55.11
48 14.50 0.00 0.00 55.91
49 14.75 0.00 0.00 56.12
50 15.00 0.00 0.00 56.09
51 15.25 0.00 0.00 56.13
52 15.25 0.00 0.00 56.03
53 15.50 0.00 0.00 56.24
54 15.75 0.00 0.00 56.30
55 16.00 0.00 0.00 56.58
56 16.25 0.00 0.00 56.80
57 16.75 0.00 0.00 57.07
58 17.25 0.00 0.00 57.34
59 17.75 0.00 0.00 57.45
60 18.00 0.00 0.00 57.68
61 18.50 0.00 0.00 57.88
62 19.25 0.00 0.00 57.83
63 20.00 0.00 0.00 58.16
64 20.50 0.00 0.00 57.93
65 21.00 0.00 0.00 58.13
66 21.25 0.00 0.00 58.05
67 21.75 0.00 0.00 58.05
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Table 8: Full Raw Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

68 22.00 0.00 0.00 57.90
69 22.25 0.00 0.00 57.81
70 22.75 0.00 0.00 57.84
71 23.00 0.00 0.00 57.81
72 23.25 0.00 0.00 57.78
73 23.75 0.00 0.00 57.76
74 24.25 0.00 0.00 57.71
75 24.50 0.00 0.00 57.58
76 24.75 0.00 0.00 57.48
77 25.25 0.00 0.00 57.30
78 25.50 0.00 0.00 57.19
79 25.75 0.00 0.00 56.98
80 26.00 0.00 0.00 56.74
81 26.25 0.00 0.00 56.43
82 26.50 0.00 0.00 55.94
83 26.75 0.00 0.00 55.77
84 27.00 0.00 0.00 55.78
85 27.25 0.00 0.00 55.55
86 27.50 0.00 0.00 55.50
87 28.25 0.00 0.00 55.38
88 29.25 0.00 0.00 54.00
89 29.50 0.00 0.00 52.36
90 30.50 0.00 0.00 52.13
91 30.75 0.00 0.00 50.52
92 31.50 0.00 0.00 49.50
93 32.25 0.00 0.00 47.31
94 32.75 0.00 0.00 45.68
95 33.25 0.00 0.00 43.57
96 33.75 0.00 0.00 41.00
97 34.25 0.00 0.00 38.12
98 35.50 0.00 0.00 34.63
99 35.75 0.00 0.00 32.84
100 36.25 0.00 0.00 30.84
101 37.00 0.00 0.00 28.35
102 37.25 0.00 0.00 26.26
103 37.75 0.00 0.00 24.30
104 38.25 0.00 0.00 22.65
105 38.50 0.00 0.00 21.20
106 39.00 0.00 0.00 19.47
107 39.25 0.00 0.00 17.36
108 39.75 0.00 0.00 15.27
109 40.25 0.00 0.00 12.64
110 40.50 0.00 0.00 11.11
111 41.00 0.00 0.00 8.60
112 41.50 0.00 0.00 5.90
113 42.25 0.00 0.00 2.32
114 42.25 0.00 0.00 1.63
115 42.75 0.00 0.85 0.00
116 42.75 0.00 1.91 0.00
117 43.25 0.00 3.52 0.00
118 43.50 0.00 5.34 0.00
119 44.00 0.00 7.92 0.00
120 44.25 0.00 9.03 0.00
121 44.50 0.00 10.13 0.00
122 44.50 0.00 11.25 0.00
123 45.00 0.00 12.82 0.00
124 45.25 0.00 13.76 0.00
125 46.00 0.00 17.43 0.00
126 46.00 0.00 18.42 0.00
127 46.50 0.00 21.14 0.00
128 47.25 0.00 23.91 0.00
129 47.75 0.00 26.51 0.00
130 48.50 0.00 29.70 0.00
131 49.00 0.00 31.57 0.00
132 49.50 0.00 33.66 0.00
133 50.25 0.00 36.76 0.00
134 50.75 0.00 38.15 0.00
135 51.25 0.00 38.77 0.00
136 52.00 0.00 40.93 0.00
137 52.75 0.00 43.15 0.00
138 53.50 0.00 44.83 0.00
139 54.25 0.00 46.91 0.00
140 54.75 0.00 48.08 0.00
141 55.50 0.00 49.33 0.00
142 56.00 0.00 50.54 0.00
143 56.50 0.00 51.31 0.00
144 56.50 0.00 52.11 0.00
145 56.75 0.00 52.21 0.00
146 57.50 0.00 52.99 0.00
147 58.25 0.00 53.91 0.00
148 59.25 0.00 54.50 0.00
149 60.50 0.00 54.93 0.00
150 61.00 0.00 54.89 0.00
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Table 8: Full Raw Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

151 61.75 0.00 55.11 0.00
152 62.25 0.00 55.19 0.00
153 63.00 0.00 55.05 0.00
154 63.25 0.00 55.34 0.00
155 63.75 0.00 55.14 0.00
156 65.50 0.00 55.19 0.00
157 67.00 0.00 54.87 0.00
158 68.50 0.00 54.39 0.00
159 69.00 0.00 54.06 0.00
160 70.25 0.00 53.56 0.00
161 71.00 0.00 52.96 0.00
162 72.00 0.00 52.24 0.00
163 72.50 0.00 51.67 0.00
164 73.75 0.00 50.62 0.00
165 74.00 0.00 50.18 0.00
166 76.50 0.00 46.20 0.00
167 77.25 0.00 44.59 0.00
168 77.75 0.00 43.24 0.00
169 78.25 0.00 41.73 0.00
170 78.75 0.00 40.36 0.00
171 79.25 0.00 38.44 0.00
172 79.75 0.00 36.99 0.00
173 80.50 0.00 33.42 0.00
174 81.25 0.00 31.15 0.00
175 82.00 0.00 26.99 0.00
176 82.50 0.00 24.75 0.00
177 83.00 0.00 22.82 0.00
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Table 9: Full Raw Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

1 0.00 0.00 0.00 0.00
2 0.25 0.00 0.00 0.14
3 0.25 0.00 0.00 0.51
4 0.50 0.00 0.00 0.98
5 0.75 0.00 0.00 1.55
6 0.75 0.00 0.00 2.34
7 1.00 0.00 0.00 3.05
8 1.00 0.00 0.00 3.67
9 1.00 0.00 0.00 4.86
10 1.25 0.00 0.00 5.41
11 1.50 0.00 0.00 7.09
12 1.50 0.00 0.00 7.95
13 1.75 0.00 0.00 8.67
14 1.75 0.00 0.00 9.41
15 2.00 0.00 0.00 10.58
16 2.00 0.00 0.00 11.16
17 2.25 0.00 0.00 12.15
18 2.75 0.00 0.00 12.93
19 2.75 0.00 0.00 13.86
20 2.75 0.00 0.00 14.45
21 2.75 0.00 0.00 15.56
22 3.00 0.00 0.00 15.85
23 3.00 0.00 0.00 16.62
24 3.25 0.00 0.00 17.15
25 3.50 0.00 0.00 17.97
26 3.50 0.00 0.00 18.08
27 4.00 0.00 0.00 20.44
28 4.25 0.00 0.00 23.71
29 4.75 0.00 0.00 25.82
30 5.75 0.00 0.00 30.29
31 6.25 0.00 0.00 32.65
32 6.50 0.00 0.00 34.75
33 7.00 0.00 0.00 36.01
34 7.75 0.00 0.00 38.46
35 7.75 0.00 0.00 39.89
36 8.25 0.00 0.00 41.49
37 9.00 0.00 0.00 43.46
38 9.25 0.00 0.00 44.93
39 9.75 0.00 0.00 46.35
40 10.00 0.00 0.00 47.89
41 10.50 0.00 0.00 48.93
42 10.75 0.00 0.00 49.80
43 11.25 0.00 0.00 50.42
44 11.50 0.00 0.00 51.36
45 12.25 0.00 0.00 52.71
46 13.00 0.00 0.00 53.81
47 14.00 0.00 0.00 55.15
48 14.50 0.00 0.00 56.11
49 15.00 0.00 0.00 56.18
50 15.00 0.00 0.00 56.22
51 15.25 0.00 0.00 56.27
52 15.25 0.00 0.00 56.06
53 15.75 0.00 0.00 56.43
54 15.75 0.00 0.00 56.38
55 16.00 0.00 0.00 56.59
56 16.25 0.00 0.00 56.85
57 16.75 0.00 0.00 57.09
58 17.50 0.00 0.00 57.44
59 17.75 0.00 0.00 57.58
60 18.25 0.00 0.00 57.81
61 18.50 0.00 0.00 58.04
62 19.50 0.00 0.00 57.95
63 20.00 0.00 0.00 58.21
64 20.50 0.00 0.00 58.04
65 21.00 0.00 0.00 58.31
66 21.25 0.00 0.00 58.12
67 21.75 0.00 0.00 58.23
68 22.00 0.00 0.00 58.06
69 22.25 0.00 0.00 57.86
70 22.75 0.00 0.00 57.95
71 23.00 0.00 0.00 57.96
72 23.25 0.00 0.00 57.92
73 24.00 0.00 0.00 57.88
74 24.25 0.00 0.00 57.89
75 24.50 0.00 0.00 57.73
76 25.00 0.00 0.00 57.54
77 25.25 0.00 0.00 57.38
78 25.50 0.00 0.00 57.20
79 25.75 0.00 0.00 57.12
80 26.25 0.00 0.00 56.80
81 26.25 0.00 0.00 56.48
82 26.50 0.00 0.00 56.02
83 27.00 0.00 0.00 55.84
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Table 9: Full Raw Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

84 27.00 0.00 0.00 55.86
85 27.25 0.00 0.00 55.63
86 27.75 0.00 0.00 55.55
87 28.25 0.00 0.00 55.52
88 29.25 0.00 0.00 54.18
89 29.75 0.00 0.00 52.50
90 30.50 0.00 0.00 52.20
91 30.75 0.00 0.00 50.56
92 31.75 0.00 0.00 49.62
93 32.25 0.00 0.00 47.35
94 32.75 0.00 0.00 45.73
95 33.25 0.00 0.00 43.69
96 33.75 0.00 0.00 41.18
97 34.25 0.00 0.00 38.19
98 35.50 0.00 0.00 34.69
99 35.75 0.00 0.00 32.92
100 36.25 0.00 0.00 30.91
101 37.00 0.00 0.00 28.53
102 37.25 0.00 0.00 26.31
103 38.00 0.00 0.00 24.38
104 38.25 0.00 0.00 22.78
105 38.50 0.00 0.00 21.30
106 39.00 0.00 0.00 19.54
107 39.25 0.00 0.00 17.41
108 39.75 0.00 0.00 15.42
109 40.25 0.00 0.00 12.71
110 40.75 0.00 0.00 11.29
111 41.25 0.00 0.00 8.69
112 41.50 0.00 0.00 6.00
113 42.25 0.00 0.00 2.45
114 42.25 0.00 0.00 1.77
115 42.75 0.00 0.00 0.71
116 43.00 0.00 0.00 0.23
117 43.25 0.00 0.87 0.00
118 43.50 0.00 1.93 0.00
119 44.25 0.00 3.53 0.00
120 44.25 0.00 5.37 0.00
121 44.50 0.00 8.02 0.00
122 44.50 0.00 9.21 0.00
123 45.00 0.00 10.14 0.00
124 45.25 0.00 11.38 0.00
125 46.00 0.00 12.97 0.00
126 46.25 0.00 13.90 0.00
127 46.75 0.00 17.56 0.00
128 47.25 0.00 18.43 0.00
129 47.75 0.00 21.29 0.00
130 48.75 0.00 24.07 0.00
131 49.00 0.00 26.65 0.00
132 49.50 0.00 29.77 0.00
133 50.25 0.00 31.59 0.00
134 50.75 0.00 33.69 0.00
135 51.25 0.00 36.91 0.00
136 52.00 0.00 38.24 0.00
137 53.00 0.00 38.88 0.00
138 53.75 0.00 41.08 0.00
139 54.25 0.00 43.21 0.00
140 54.75 0.00 44.94 0.00
141 55.50 0.00 46.96 0.00
142 56.25 0.00 48.14 0.00
143 56.50 0.00 49.33 0.00
144 56.75 0.00 50.56 0.00
145 56.75 0.00 51.33 0.00
146 57.50 0.00 52.16 0.00
147 58.25 0.00 52.24 0.00
148 59.50 0.00 53.01 0.00
149 60.75 0.00 53.99 0.00
150 61.00 0.00 54.70 0.00
151 61.75 0.00 55.03 0.00
152 62.25 0.00 54.99 0.00
153 63.00 0.00 55.26 0.00
154 63.25 0.00 55.36 0.00
155 63.75 0.00 55.25 0.00
156 65.50 0.00 55.41 0.00
157 67.25 0.00 55.20 0.00
158 68.75 0.00 55.31 0.00
159 69.00 0.00 55.00 0.00
160 70.25 0.00 54.50 0.00
161 71.25 0.00 54.22 0.00
162 72.00 0.00 53.64 0.00
163 72.50 0.00 53.05 0.00
164 73.75 0.00 52.32 0.00
165 74.25 0.00 51.80 0.00
166 76.50 0.00 50.66 0.00
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Table 9: Full Raw Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

167 77.25 0.00 50.27 0.00
168 78.00 0.00 46.35 0.00
169 78.25 0.00 44.64 0.00
170 78.75 0.00 43.42 0.00
171 79.25 0.00 41.85 0.00
172 79.75 0.00 40.37 0.00
173 80.50 0.00 38.51 0.00
174 81.00 0.00 37.09 0.00
175 81.25 0.00 33.57 0.00
176 81.50 0.00 31.21 0.00
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Table 10: Full Raw Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

1 0.00 0.00 0.00 0.00
2 0.25 0.00 0.00 0.17
3 0.25 0.00 0.00 0.49
4 0.50 0.00 0.00 0.88
5 0.75 0.00 0.00 1.51
6 0.75 0.00 0.00 2.26
7 1.00 0.00 0.00 3.16
8 1.00 0.00 0.00 3.70
9 1.00 0.00 0.00 4.98
10 1.25 0.00 0.00 5.59
11 1.50 0.00 0.00 7.20
12 1.75 0.00 0.00 8.02
13 2.00 0.00 0.00 8.82
14 2.00 0.00 0.00 9.56
15 2.00 0.00 0.00 10.73
16 2.25 0.00 0.00 11.21
17 2.50 0.00 0.00 12.18
18 2.75 0.00 0.00 13.04
19 2.75 0.00 0.00 13.98
20 3.00 0.00 0.00 14.54
21 3.00 0.00 0.00 15.68
22 3.25 0.00 0.00 16.02
23 3.25 0.00 0.00 16.80
24 3.50 0.00 0.00 17.19
25 3.50 0.00 0.00 18.16
26 3.50 0.00 0.00 18.15
27 4.00 0.00 0.00 20.53
28 4.25 0.00 0.00 23.82
29 5.00 0.00 0.00 25.98
30 6.00 0.00 0.00 30.47
31 6.25 0.00 0.00 32.80
32 6.50 0.00 0.00 34.77
33 7.00 0.00 0.00 36.01
34 7.75 0.00 0.00 38.64
35 8.00 0.00 0.00 39.98
36 8.50 0.00 0.00 41.52
37 9.00 0.00 0.00 43.50
38 9.50 0.00 0.00 45.10
39 10.00 0.00 0.00 46.42
40 10.00 0.00 0.00 47.92
41 10.50 0.00 0.00 49.05
42 11.00 0.00 0.00 49.90
43 11.50 0.00 0.00 50.56
44 11.50 0.00 0.00 51.50
45 12.50 0.00 0.00 52.83
46 13.25 0.00 0.00 53.86
47 14.00 0.00 0.00 55.16
48 14.75 0.00 0.00 56.16
49 15.00 0.00 0.00 56.30
50 15.00 0.00 0.00 56.32
51 15.50 0.00 0.00 56.36
52 15.50 0.00 0.00 56.19
53 16.00 0.00 0.00 56.52
54 15.75 0.00 0.00 56.52
55 16.00 0.00 0.00 56.68
56 16.50 0.00 0.00 56.87
57 17.00 0.00 0.00 57.28
58 17.50 0.00 0.00 57.63
59 17.75 0.00 0.00 57.73
60 18.50 0.00 0.00 58.00
61 18.50 0.00 0.00 58.05
62 19.50 0.00 0.00 58.10
63 20.25 0.00 0.00 58.21
64 20.50 0.00 0.00 58.06
65 21.00 0.00 0.00 58.35
66 21.25 0.00 0.00 58.29
67 22.00 0.00 0.00 58.24
68 22.25 0.00 0.00 58.13
69 22.50 0.00 0.00 58.04
70 22.75 0.00 0.00 58.00
71 23.00 0.00 0.00 57.98
72 23.25 0.00 0.00 57.95
73 24.00 0.00 0.00 58.06
74 24.50 0.00 0.00 58.09
75 24.50 0.00 0.00 57.86
76 25.00 0.00 0.00 57.59
77 25.25 0.00 0.00 57.41
78 25.50 0.00 0.00 57.20
79 25.75 0.00 0.00 57.25
80 26.25 0.00 0.00 56.80
81 26.50 0.00 0.00 56.62
82 26.50 0.00 0.00 56.18
83 27.00 0.00 0.00 55.98
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Table 10: Full Raw Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

84 27.00 0.00 0.00 55.94
85 27.50 0.00 0.00 55.76
86 27.75 0.00 0.00 55.57
87 28.50 0.00 0.00 55.58
88 29.50 0.00 0.00 54.36
89 29.75 0.00 0.00 52.69
90 30.50 0.00 0.00 52.30
91 31.00 0.00 0.00 50.64
92 32.00 0.00 0.00 49.73
93 32.25 0.00 0.00 47.44
94 33.00 0.00 0.00 45.80
95 33.25 0.00 0.00 43.83
96 33.75 0.00 0.00 41.26
97 34.25 0.00 0.00 38.25
98 35.75 0.00 0.00 34.72
99 35.75 0.00 0.00 33.08
100 36.50 0.00 0.00 31.09
101 37.00 0.00 0.00 28.62
102 37.50 0.00 0.00 26.39
103 38.00 0.00 0.00 24.48
104 38.25 0.00 0.00 22.82
105 38.50 0.00 0.00 21.43
106 39.00 0.00 0.00 19.63
107 39.50 0.00 0.00 17.54
108 40.00 0.00 0.00 15.52
109 40.50 0.00 0.00 12.74
110 41.00 0.00 0.00 11.32
111 41.25 0.00 0.00 8.87
112 41.50 0.00 0.00 6.17
113 42.50 0.00 0.00 2.62
114 42.50 0.00 0.00 1.79
115 43.00 0.00 0.00 0.83
116 43.25 0.00 0.94 0.00
117 43.25 0.00 2.05 0.00
118 43.50 0.00 3.54 0.00
119 44.50 0.00 5.48 0.00
120 44.25 0.00 7.99 0.00
121 44.50 0.00 9.05 0.00
122 44.75 0.00 10.24 0.00
123 45.00 0.00 11.44 0.00
124 45.25 0.00 12.92 0.00
125 46.00 0.00 13.80 0.00
126 46.25 0.00 17.50 0.00
127 47.00 0.00 18.45 0.00
128 47.50 0.00 21.16 0.00
129 47.75 0.00 24.05 0.00
130 48.75 0.00 26.55 0.00
131 49.25 0.00 29.79 0.00
132 49.50 0.00 31.70 0.00
133 50.50 0.00 33.73 0.00
134 51.00 0.00 36.92 0.00
135 51.25 0.00 38.26 0.00
136 52.00 0.00 38.88 0.00
137 53.25 0.00 41.05 0.00
138 54.00 0.00 43.20 0.00
139 54.50 0.00 44.94 0.00
140 55.00 0.00 46.93 0.00
141 55.50 0.00 48.17 0.00
142 56.25 0.00 49.52 0.00
143 56.50 0.00 50.66 0.00
144 56.75 0.00 51.51 0.00
145 56.75 0.00 52.27 0.00
146 57.50 0.00 52.37 0.00
147 58.25 0.00 53.05 0.00
148 59.50 0.00 54.10 0.00
149 60.75 0.00 54.60 0.00
150 61.00 0.00 54.96 0.00
151 61.75 0.00 55.09 0.00
152 62.50 0.00 55.28 0.00
153 63.00 0.00 55.31 0.00
154 63.50 0.00 55.22 0.00
155 63.75 0.00 55.43 0.00
156 65.75 0.00 55.14 0.00
157 67.25 0.00 55.36 0.00
158 68.75 0.00 55.02 0.00
159 69.00 0.00 54.46 0.00
160 70.25 0.00 54.17 0.00
161 71.25 0.00 53.73 0.00
162 72.25 0.00 53.12 0.00
163 72.50 0.00 52.36 0.00
164 73.75 0.00 51.78 0.00
165 74.25 0.00 50.66 0.00
166 76.50 0.00 50.21 0.00
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Table 10: Full Raw Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�✓i
(� ± 0.25 �)

�✓o
(� ± 0.25 �)

Left Scale
Reading

(g ± 0.01 g)

Right Scale
Reading

(g ± 0.01 g)

167 77.50 0.00 46.23 0.00
168 78.25 0.00 44.71 0.00
169 78.50 0.00 43.36 0.00
170 78.75 0.00 41.79 0.00
171 79.50 0.00 40.40 0.00
172 79.75 0.00 38.51 0.00
173 80.50 0.00 37.15 0.00
174 81.50 0.00 33.42 0.00
175 82.00 0.00 31.32 0.00
176 82.50 0.00 27.01 0.00
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J Full Processed Dataset for
Torque Curve
Generation

Table 11: Full Processed Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

1 0.000 0 ± 0
2 0.004 0.00045 ± 0.00005
3 0.004 0.00166 ± 0.00007
4 0.004 0.0036 ± 0.0001
5 0.009 0.0061 ± 0.0001
6 0.009 0.0089 ± 0.0002
7 0.013 0.0117 ± 0.0002
8 0.013 0.0148 ± 0.0003
9 0.017 0.0195 ± 0.0003
10 0.017 0.0219 ± 0.0004
11 0.026 0.0283 ± 0.0005
12 0.026 0.0319 ± 0.0005
13 0.031 0.0348 ± 0.0006
14 0.031 0.0381 ± 0.0006
15 0.035 0.0425 ± 0.0007
16 0.035 0.0449 ± 0.0007
17 0.039 0.0488 ± 0.0008
18 0.044 0.0521 ± 0.0008
19 0.044 0.0559 ± 0.0009
20 0.048 0.0585 ± 0.0009
21 0.048 0.063 ± 0.001
22 0.052 0.064 ± 0.001
23 0.052 0.067 ± 0.001
24 0.057 0.069 ± 0.001
25 0.057 0.072 ± 0.001
26 0.057 0.073 ± 0.001
27 0.065 0.083 ± 0.001
28 0.074 0.096 ± 0.002
29 0.083 0.105 ± 0.002
30 0.100 0.123 ± 0.002
31 0.109 0.132 ± 0.002
32 0.113 0.140 ± 0.002
33 0.122 0.146 ± 0.002
34 0.131 0.155 ± 0.002
35 0.135 0.162 ± 0.003
36 0.144 0.168 ± 0.003
37 0.153 0.176 ± 0.003
38 0.161 0.182 ± 0.003
39 0.170 0.187 ± 0.003
40 0.175 0.194 ± 0.003
41 0.183 0.198 ± 0.003
42 0.188 0.201 ± 0.003
43 0.196 0.204 ± 0.003
44 0.201 0.208 ± 0.003
45 0.214 0.213 ± 0.003
46 0.227 0.218 ± 0.003
47 0.244 0.224 ± 0.003
48 0.253 0.227 ± 0.004
49 0.257 0.228 ± 0.004
50 0.262 0.228 ± 0.004
51 0.266 0.228 ± 0.004
52 0.266 0.227 ± 0.004
53 0.271 0.228 ± 0.004
54 0.275 0.229 ± 0.004
55 0.279 0.230 ± 0.004
56 0.284 0.231 ± 0.004
57 0.292 0.232 ± 0.004
58 0.301 0.233 ± 0.004
59 0.310 0.233 ± 0.004
60 0.314 0.234 ± 0.004
61 0.323 0.235 ± 0.004
62 0.336 0.235 ± 0.004
63 0.349 0.236 ± 0.004
64 0.358 0.235 ± 0.004
65 0.367 0.236 ± 0.004
66 0.371 0.236 ± 0.004
67 0.380 0.236 ± 0.004
68 0.384 0.235 ± 0.004
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Table 11: Full Processed Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

69 0.388 0.235 ± 0.004
70 0.397 0.235 ± 0.004
71 0.401 0.235 ± 0.004
72 0.406 0.235 ± 0.004
73 0.415 0.234 ± 0.004
74 0.423 0.234 ± 0.004
75 0.428 0.234 ± 0.004
76 0.432 0.233 ± 0.004
77 0.441 0.233 ± 0.004
78 0.445 0.232 ± 0.004
79 0.449 0.231 ± 0.004
80 0.454 0.230 ± 0.004
81 0.458 0.229 ± 0.004
82 0.463 0.227 ± 0.004
83 0.467 0.226 ± 0.004
84 0.471 0.226 ± 0.004
85 0.476 0.226 ± 0.004
86 0.480 0.225 ± 0.004
87 0.493 0.225 ± 0.004
88 0.511 0.219 ± 0.003
89 0.515 0.213 ± 0.003
90 0.532 0.212 ± 0.003
91 0.537 0.205 ± 0.003
92 0.550 0.201 ± 0.003
93 0.563 0.192 ± 0.003
94 0.572 0.185 ± 0.003
95 0.580 0.177 ± 0.003
96 0.589 0.166 ± 0.003
97 0.598 0.155 ± 0.002
98 0.620 0.141 ± 0.002
99 0.624 0.133 ± 0.002
100 0.633 0.125 ± 0.002
101 0.646 0.115 ± 0.002
102 0.650 0.107 ± 0.002
103 0.659 0.099 ± 0.002
104 0.668 0.092 ± 0.001
105 0.672 0.086 ± 0.001
106 0.681 0.079 ± 0.001
107 0.685 0.070 ± 0.001
108 0.694 0.062 ± 0.001
109 0.702 0.0513 ± 0.0008
110 0.707 0.0451 ± 0.0007
111 0.716 0.0349 ± 0.0006
112 0.724 0.0240 ± 0.0004
113 0.737 0.0094 ± 0.0002
114 0.737 0.0066 ± 0.0002
115 0.746 -0.00345 ± 0.00009
116 0.746 -0.0078 ± 0.0002
117 0.755 -0.0143 ± 0.0003
118 0.759 -0.0217 ± 0.0004
119 0.768 -0.0322 ± 0.0005
120 0.772 -0.0367 ± 0.0006
121 0.777 -0.0411 ± 0.0007
122 0.777 -0.0457 ± 0.0007
123 0.785 -0.0520 ± 0.0008
124 0.790 -0.0559 ± 0.0009
125 0.803 -0.071 ± 0.001
126 0.803 -0.075 ± 0.001
127 0.812 -0.086 ± 0.001
128 0.825 -0.097 ± 0.002
129 0.833 -0.108 ± 0.002
130 0.846 -0.121 ± 0.002
131 0.855 -0.128 ± 0.002
132 0.864 -0.137 ± 0.002
133 0.877 -0.149 ± 0.002
134 0.886 -0.155 ± 0.002
135 0.894 -0.157 ± 0.002
136 0.908 -0.166 ± 0.003
137 0.921 -0.175 ± 0.003
138 0.934 -0.182 ± 0.003
139 0.947 -0.190 ± 0.003
140 0.956 -0.195 ± 0.003
141 0.969 -0.200 ± 0.003
142 0.977 -0.205 ± 0.003
143 0.986 -0.208 ± 0.003
144 0.986 -0.212 ± 0.003
145 0.990 -0.212 ± 0.003
146 1.004 -0.215 ± 0.003
147 1.017 -0.219 ± 0.003
148 1.034 -0.221 ± 0.003
149 1.056 -0.223 ± 0.003
150 1.065 -0.223 ± 0.003
151 1.078 -0.224 ± 0.003
152 1.086 -0.224 ± 0.003

62



Table 11: Full Processed Dataset of Torque Curve
Generation for Trial 1

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

153 1.100 -0.223 ± 0.003
154 1.104 -0.225 ± 0.004
155 1.113 -0.224 ± 0.003
156 1.143 -0.224 ± 0.003
157 1.169 -0.223 ± 0.003
158 1.196 -0.221 ± 0.003
159 1.204 -0.219 ± 0.003
160 1.226 -0.217 ± 0.003
161 1.239 -0.215 ± 0.003
162 1.257 -0.212 ± 0.003
163 1.265 -0.210 ± 0.003
164 1.287 -0.206 ± 0.003
165 1.292 -0.204 ± 0.003
166 1.335 -0.188 ± 0.003
167 1.348 -0.181 ± 0.003
168 1.357 -0.176 ± 0.003
169 1.366 -0.169 ± 0.003
170 1.374 -0.164 ± 0.003
171 1.383 -0.156 ± 0.002
172 1.392 -0.150 ± 0.002
173 1.405 -0.136 ± 0.002
174 1.418 -0.126 ± 0.002
175 1.431 -0.110 ± 0.002
176 1.440 -0.100 ± 0.002
177 1.449 -0.093 ± 0.001
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Table 12: Full Processed Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

1 0.000 0 ± 0
2 0.004 0.00057 ± 0.00005
3 0.004 0.00207 ± 0.00007
4 0.009 0.0040 ± 0.0001
5 0.013 0.0063 ± 0.0001
6 0.013 0.0095 ± 0.0002
7 0.017 0.0124 ± 0.0002
8 0.017 0.0149 ± 0.0003
9 0.017 0.0197 ± 0.0003
10 0.022 0.0220 ± 0.0004
11 0.026 0.0288 ± 0.0005
12 0.026 0.0323 ± 0.0005
13 0.031 0.0352 ± 0.0006
14 0.031 0.0382 ± 0.0006
15 0.035 0.0430 ± 0.0007
16 0.035 0.0453 ± 0.0007
17 0.039 0.0493 ± 0.0008
18 0.048 0.0525 ± 0.0008
19 0.048 0.0563 ± 0.0009
20 0.048 0.0587 ± 0.0009
21 0.048 0.063 ± 0.001
22 0.052 0.064 ± 0.001
23 0.052 0.067 ± 0.001
24 0.057 0.070 ± 0.001
25 0.061 0.073 ± 0.001
26 0.061 0.073 ± 0.001
27 0.070 0.083 ± 0.001
28 0.074 0.096 ± 0.002
29 0.083 0.105 ± 0.002
30 0.100 0.123 ± 0.002
31 0.109 0.133 ± 0.002
32 0.113 0.141 ± 0.002
33 0.122 0.146 ± 0.002
34 0.135 0.156 ± 0.002
35 0.135 0.162 ± 0.003
36 0.144 0.168 ± 0.003
37 0.157 0.176 ± 0.003
38 0.161 0.182 ± 0.003
39 0.170 0.188 ± 0.003
40 0.175 0.194 ± 0.003
41 0.183 0.199 ± 0.003
42 0.188 0.202 ± 0.003
43 0.196 0.205 ± 0.003
44 0.201 0.209 ± 0.003
45 0.214 0.214 ± 0.003
46 0.227 0.218 ± 0.003
47 0.244 0.224 ± 0.003
48 0.253 0.228 ± 0.004
49 0.262 0.228 ± 0.004
50 0.262 0.228 ± 0.004
51 0.266 0.228 ± 0.004
52 0.266 0.228 ± 0.004
53 0.275 0.229 ± 0.004
54 0.275 0.229 ± 0.004
55 0.279 0.230 ± 0.004
56 0.284 0.231 ± 0.004
57 0.292 0.232 ± 0.004
58 0.305 0.233 ± 0.004
59 0.310 0.234 ± 0.004
60 0.319 0.235 ± 0.004
61 0.323 0.236 ± 0.004
62 0.340 0.235 ± 0.004
63 0.349 0.236 ± 0.004
64 0.358 0.236 ± 0.004
65 0.367 0.237 ± 0.004
66 0.371 0.236 ± 0.004
67 0.380 0.236 ± 0.004
68 0.384 0.236 ± 0.004
69 0.388 0.235 ± 0.004
70 0.397 0.235 ± 0.004
71 0.401 0.235 ± 0.004
72 0.406 0.235 ± 0.004
73 0.419 0.235 ± 0.004
74 0.423 0.235 ± 0.004
75 0.428 0.234 ± 0.004
76 0.436 0.234 ± 0.004
77 0.441 0.233 ± 0.004
78 0.445 0.232 ± 0.004
79 0.449 0.232 ± 0.004
80 0.458 0.231 ± 0.004
81 0.458 0.229 ± 0.004
82 0.463 0.227 ± 0.004
83 0.471 0.227 ± 0.004
84 0.471 0.227 ± 0.004
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Table 12: Full Processed Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

85 0.476 0.226 ± 0.004
86 0.484 0.226 ± 0.004
87 0.493 0.225 ± 0.004
88 0.511 0.220 ± 0.003
89 0.519 0.213 ± 0.003
90 0.532 0.212 ± 0.003
91 0.537 0.205 ± 0.003
92 0.554 0.201 ± 0.003
93 0.563 0.192 ± 0.003
94 0.572 0.186 ± 0.003
95 0.580 0.177 ± 0.003
96 0.589 0.167 ± 0.003
97 0.598 0.155 ± 0.002
98 0.620 0.141 ± 0.002
99 0.624 0.134 ± 0.002
100 0.633 0.125 ± 0.002
101 0.646 0.116 ± 0.002
102 0.650 0.107 ± 0.002
103 0.663 0.099 ± 0.002
104 0.668 0.092 ± 0.001
105 0.672 0.086 ± 0.001
106 0.681 0.079 ± 0.001
107 0.685 0.071 ± 0.001
108 0.694 0.063 ± 0.001
109 0.702 0.0516 ± 0.0008
110 0.711 0.0458 ± 0.0007
111 0.720 0.0353 ± 0.0006
112 0.724 0.0244 ± 0.0004
113 0.737 0.0099 ± 0.0002
114 0.737 0.0072 ± 0.0002
115 0.746 0.00288 ± 0.00009
116 0.750 0.00093 ± 0.00005
117 0.755 -0.0035 ± 0.0001
118 0.759 -0.0078 ± 0.0002
119 0.772 -0.0143 ± 0.0003
120 0.772 -0.0218 ± 0.0004
121 0.777 -0.0326 ± 0.0005
122 0.777 -0.0374 ± 0.0006
123 0.785 -0.0412 ± 0.0007
124 0.790 -0.0462 ± 0.0008
125 0.803 -0.0527 ± 0.0009
126 0.807 -0.0564 ± 0.0009
127 0.816 -0.071 ± 0.001
128 0.825 -0.075 ± 0.001
129 0.833 -0.086 ± 0.001
130 0.851 -0.098 ± 0.002
131 0.855 -0.108 ± 0.002
132 0.864 -0.121 ± 0.002
133 0.877 -0.128 ± 0.002
134 0.886 -0.137 ± 0.002
135 0.894 -0.150 ± 0.002
136 0.908 -0.155 ± 0.002
137 0.925 -0.158 ± 0.002
138 0.938 -0.167 ± 0.003
139 0.947 -0.175 ± 0.003
140 0.956 -0.182 ± 0.003
141 0.969 -0.191 ± 0.003
142 0.982 -0.195 ± 0.003
143 0.986 -0.200 ± 0.003
144 0.990 -0.205 ± 0.003
145 0.990 -0.208 ± 0.003
146 1.004 -0.212 ± 0.003
147 1.017 -0.212 ± 0.003
148 1.038 -0.215 ± 0.003
149 1.060 -0.219 ± 0.003
150 1.065 -0.222 ± 0.003
151 1.078 -0.223 ± 0.003
152 1.086 -0.223 ± 0.003
153 1.100 -0.224 ± 0.003
154 1.104 -0.225 ± 0.004
155 1.113 -0.224 ± 0.003
156 1.143 -0.225 ± 0.004
157 1.174 -0.224 ± 0.003
158 1.200 -0.225 ± 0.004
159 1.204 -0.223 ± 0.003
160 1.226 -0.221 ± 0.003
161 1.244 -0.220 ± 0.003
162 1.257 -0.218 ± 0.003
163 1.265 -0.215 ± 0.003
164 1.287 -0.212 ± 0.003
165 1.296 -0.210 ± 0.003
166 1.335 -0.206 ± 0.003
167 1.348 -0.204 ± 0.003
168 1.361 -0.188 ± 0.003
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Table 12: Full Processed Dataset of Torque Curve
Generation for Trial 2

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

169 1.366 -0.181 ± 0.003
170 1.374 -0.176 ± 0.003
171 1.383 -0.170 ± 0.003
172 1.392 -0.164 ± 0.003
173 1.405 -0.156 ± 0.002
174 1.414 -0.151 ± 0.002
175 1.418 -0.136 ± 0.002
176 1.422 -0.127 ± 0.002
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Table 13: Full Processed Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

1 0.000 0 ± 0
2 0.004 0.00069 ± 0.00005
3 0.004 0.00199 ± 0.00007
4 0.009 0.0036 ± 0.0001
5 0.013 0.0061 ± 0.0001
6 0.013 0.0092 ± 0.0002
7 0.017 0.0128 ± 0.0002
8 0.017 0.0150 ± 0.0003
9 0.017 0.0202 ± 0.0004
10 0.022 0.0227 ± 0.0004
11 0.026 0.0292 ± 0.0005
12 0.031 0.0326 ± 0.0005
13 0.035 0.0358 ± 0.0006
14 0.035 0.0388 ± 0.0006
15 0.035 0.0436 ± 0.0007
16 0.039 0.0455 ± 0.0007
17 0.044 0.0494 ± 0.0008
18 0.048 0.0529 ± 0.0009
19 0.048 0.0568 ± 0.0009
20 0.052 0.059 ± 0.001
21 0.052 0.064 ± 0.001
22 0.057 0.065 ± 0.001
23 0.057 0.068 ± 0.001
24 0.061 0.070 ± 0.001
25 0.061 0.074 ± 0.001
26 0.061 0.074 ± 0.001
27 0.070 0.083 ± 0.001
28 0.074 0.097 ± 0.002
29 0.087 0.105 ± 0.002
30 0.105 0.124 ± 0.002
31 0.109 0.133 ± 0.002
32 0.113 0.141 ± 0.002
33 0.122 0.146 ± 0.002
34 0.135 0.157 ± 0.002
35 0.140 0.162 ± 0.003
36 0.148 0.169 ± 0.003
37 0.157 0.177 ± 0.003
38 0.166 0.183 ± 0.003
39 0.175 0.188 ± 0.003
40 0.175 0.195 ± 0.003
41 0.183 0.199 ± 0.003
42 0.192 0.203 ± 0.003
43 0.201 0.205 ± 0.003
44 0.201 0.209 ± 0.003
45 0.218 0.214 ± 0.003
46 0.231 0.219 ± 0.003
47 0.244 0.224 ± 0.003
48 0.257 0.228 ± 0.004
49 0.262 0.229 ± 0.004
50 0.262 0.229 ± 0.004
51 0.271 0.229 ± 0.004
52 0.271 0.228 ± 0.004
53 0.279 0.229 ± 0.004
54 0.275 0.229 ± 0.004
55 0.279 0.230 ± 0.004
56 0.288 0.231 ± 0.004
57 0.297 0.233 ± 0.004
58 0.305 0.234 ± 0.004
59 0.310 0.234 ± 0.004
60 0.323 0.235 ± 0.004
61 0.323 0.236 ± 0.004
62 0.340 0.236 ± 0.004
63 0.353 0.236 ± 0.004
64 0.358 0.236 ± 0.004
65 0.367 0.237 ± 0.004
66 0.371 0.237 ± 0.004
67 0.384 0.236 ± 0.004
68 0.388 0.236 ± 0.004
69 0.393 0.236 ± 0.004
70 0.397 0.235 ± 0.004
71 0.401 0.235 ± 0.004
72 0.406 0.235 ± 0.004
73 0.419 0.236 ± 0.004
74 0.428 0.236 ± 0.004
75 0.428 0.235 ± 0.004
76 0.436 0.234 ± 0.004
77 0.441 0.233 ± 0.004
78 0.445 0.232 ± 0.004
79 0.449 0.232 ± 0.004
80 0.458 0.231 ± 0.004
81 0.463 0.230 ± 0.004
82 0.463 0.228 ± 0.004
83 0.471 0.227 ± 0.004
84 0.471 0.227 ± 0.004
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Table 13: Full Processed Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

85 0.480 0.226 ± 0.004
86 0.484 0.226 ± 0.004
87 0.497 0.226 ± 0.004
88 0.515 0.221 ± 0.003
89 0.519 0.214 ± 0.003
90 0.532 0.212 ± 0.003
91 0.541 0.206 ± 0.003
92 0.559 0.202 ± 0.003
93 0.563 0.193 ± 0.003
94 0.576 0.186 ± 0.003
95 0.580 0.178 ± 0.003
96 0.589 0.168 ± 0.003
97 0.598 0.155 ± 0.002
98 0.624 0.141 ± 0.002
99 0.624 0.134 ± 0.002
100 0.637 0.126 ± 0.002
101 0.646 0.116 ± 0.002
102 0.654 0.107 ± 0.002
103 0.663 0.099 ± 0.002
104 0.668 0.093 ± 0.001
105 0.672 0.087 ± 0.001
106 0.681 0.080 ± 0.001
107 0.689 0.071 ± 0.001
108 0.698 0.063 ± 0.001
109 0.707 0.0517 ± 0.0008
110 0.716 0.0460 ± 0.0007
111 0.720 0.0360 ± 0.0006
112 0.724 0.0250 ± 0.0004
113 0.742 0.0106 ± 0.0002
114 0.742 0.0073 ± 0.0002
115 0.750 0.00337 ± 0.00009
116 0.755 -0.0038 ± 0.0001
117 0.755 -0.0083 ± 0.0002
118 0.759 -0.0144 ± 0.0003
119 0.777 -0.0222 ± 0.0004
120 0.772 -0.0324 ± 0.0005
121 0.777 -0.0367 ± 0.0006
122 0.781 -0.0416 ± 0.0007
123 0.785 -0.0464 ± 0.0008
124 0.790 -0.0525 ± 0.0008
125 0.803 -0.0560 ± 0.0009
126 0.807 -0.071 ± 0.001
127 0.820 -0.075 ± 0.001
128 0.829 -0.086 ± 0.001
129 0.833 -0.098 ± 0.002
130 0.851 -0.108 ± 0.002
131 0.860 -0.121 ± 0.002
132 0.864 -0.129 ± 0.002
133 0.881 -0.137 ± 0.002
134 0.890 -0.150 ± 0.002
135 0.894 -0.155 ± 0.002
136 0.908 -0.158 ± 0.002
137 0.929 -0.167 ± 0.003
138 0.942 -0.175 ± 0.003
139 0.951 -0.182 ± 0.003
140 0.960 -0.191 ± 0.003
141 0.969 -0.196 ± 0.003
142 0.982 -0.201 ± 0.003
143 0.986 -0.206 ± 0.003
144 0.990 -0.209 ± 0.003
145 0.990 -0.212 ± 0.003
146 1.004 -0.213 ± 0.003
147 1.017 -0.215 ± 0.003
148 1.038 -0.220 ± 0.003
149 1.060 -0.222 ± 0.003
150 1.065 -0.223 ± 0.003
151 1.078 -0.224 ± 0.003
152 1.091 -0.224 ± 0.003
153 1.100 -0.225 ± 0.004
154 1.108 -0.224 ± 0.003
155 1.113 -0.225 ± 0.004
156 1.148 -0.224 ± 0.003
157 1.174 -0.225 ± 0.004
158 1.200 -0.223 ± 0.003
159 1.204 -0.221 ± 0.003
160 1.226 -0.220 ± 0.003
161 1.244 -0.218 ± 0.003
162 1.261 -0.216 ± 0.003
163 1.265 -0.213 ± 0.003
164 1.287 -0.210 ± 0.003
165 1.296 -0.206 ± 0.003
166 1.335 -0.204 ± 0.003
167 1.353 -0.188 ± 0.003
168 1.366 -0.182 ± 0.003
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Table 13: Full Processed Dataset of Torque Curve
Generation for Trial 3

Data Point
#

�⇥
(rad ± 0.008 rad)

Torque
(Nm) ± Torque Unc.

(Nm)

169 1.370 -0.176 ± 0.003
170 1.374 -0.170 ± 0.003
171 1.388 -0.164 ± 0.003
172 1.392 -0.156 ± 0.002
173 1.405 -0.151 ± 0.002
174 1.422 -0.136 ± 0.002
175 1.431 -0.127 ± 0.002
176 1.440 -0.110 ± 0.002
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